跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

阻力方程

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自阻力方程式

阻力方程流體力學中計算一物體流體中運動,所受到阻力方程式

此方程式是由瑞利勛爵所提出,其方程式如下:

其中

FD為阻力,是施力平行流場方向的分量[註 1].
ρ為流體密度[註 2]
v 是流體相對物體的速度.
A 為參考面積.
CD阻力係數,是一個無因次的係數,像汽車的阻力係數約在0.25到0.45之間.

參考面積A一般定義為物體在運動方向上的正交投影面積。對於形狀簡單,沒有空洞的物體(例如球),參考面即為截面。若是其他物體(例如自行車騎士的身體),A可能比任何一個截面都要大。翼形就用翼弦的平方為參考面積。由於翼弦長常定義為1,因此參考面積也是1。飛機的阻力常和其升力相比較,因此常用機翼面積(或轉子葉片面積)作為其參考面。飛艇旋轉體使用體積阻力係數,其參考面積為其體積立方根的平方。有時一物體為了和其他物體比較阻力係數,會使用不同的參考面積,此時需特別標示所使用的參考面積。

對有尖角的物體,例如長方柱或是垂直流體方向的圓盤,在雷諾數大於1000時可以將阻力係數視為一定值[1]。但若是圓滑的物體,例如圓柱,阻力係數會隨著雷諾數有明顯的變化,甚至到雷諾數到達107也是如此[2]

討論

[编辑]

阻力方程是立基在一個假設的理想情形下:所有流體衝撞物體的參考面後停止,因此在整個參考面上產生滯止壓強。實際的物體不可能完全符合此現象,而阻力係數CD就是真實物體所受阻力相對於理想情形阻力的比例。一般而言較粗糙。非流線性的物體其CD接近1。較平滑的物體CD數值較低。阻力方程提供了阻力係數CD的定義,此係數會隨雷諾數而變化,實際的數值需要利用實驗來求得。

若不考慮阻力係數的變化,阻力和流體速度的平方成正比,若速度變成原來的二倍,不但衝撞物體的流體速度加倍,單位時間內衝撞物體的流體質量也加倍,因此單位時間內的動量變化(及阻力)都變成原來的四倍。此現象和固體和固體之間的摩擦力不同,速度變化時,摩擦力不會有明顯的改變。

推導

[编辑]

阻力方程可以由因次分析推導而得。假設一運動中的流體碰撞一物體,流體會對物體施力,根據一個複雜(且未完全了解)的定律,可以假設以下變數之間存在某種關係:

  • 速度 u,
  • 流體密度 ρ,
  • 流體的動黏滯係數 ν
  • 物體的大小,以其迎风面积A表示
  • 阻力 FD

利用白金漢π定理,可以將上述的5個變數簡化為以下的二個變數:

  • 阻力係數 CD
  • 雷諾數 Re

若考慮原來的5個變數,可以得到以下的式子

上式並未假設阻力和其他變數之間有一對一的函數對應關係。而上式中的fa是某個未知的,有五個變數的函數。由於方程式的右側是0,和使用的單位系統無關,因此應該可以將fa用無量綱來表示。

將上述五個變數組合成無量綱的方式有許多種,不過根據白金漢π定理,最後會有二個無量綱。最合適的是雷諾數

及阻力係數

因此上述五個變數的函數可以用另一個只有二個變數的函數來表示:

其中fb為某個只有二個變數的函數。因此原始的方程式變成只有二個變數的方程式

由於其中唯一的未知數為阻力FD,其型式可能如下

    及    

因此阻力可表示成 ½ ρ A u2 乘以某個自變數為雷諾數Re的未知函數,此型式較原來五個變數的函數要簡單許多。

透過因次分析將原本複雜的問題(要找出有五個變數的函數)變成一個較簡單的問題:決定阻力和雷諾數之間的函數關係。

因次分析也提供一些額外的資訊,例如在其他條件不變時,阻力和流體密度成正比,此資訊在進行研究的初期尤其寶貴。若要研究阻力和雷諾數之間的關係,可以不用用大型的物體在高速流體下進行實驗(例如用真實尺寸的飛機進行風洞實驗),只要用較小的物體,在黏滯度更大,速度更快的流體中進行實驗即可,因為這二個系統為相似英语Similitude (model)的。

注释

[编辑]
  1. ^ 施力垂直流場方向的分量可能有升力涡激振动英语vortex induced vibration.
  2. ^ 若在地球大气层中,空氣密度可以用压高公式英语barometric formula計算. 在0°C,一大氣壓條件下密度為1.293 kg/m3.

参考文献

[编辑]

引用

[编辑]
  1. ^ Drag Force 互联网档案馆存檔,存档日期2008-04-14.
  2. ^ See Batchelor (1967), p. 341.

来源

[编辑]
书籍
  • Batchelor, G. K. An Introduction to Fluid Dynamics. Cambridge University Press. 1967. ISBN 0521663962. 
  • Huntley, H. E. Dimensional Analysis. Dover. 1967. LOC 67-17978. 

参见

[编辑]