频率 (统计学)
此條目可参照英語維基百科相應條目来扩充。 |
统计学裡,一事件的频率,可以表示為,是在實驗中觀測到事件的次數与总实验次数的比值[1]。例如在擲骰子100次的隨機實驗中,有16次擲出6點,則在該實驗中,「擲出6點」事件的頻率為0.16。
事件的频数(或次數),即為實驗中觀測到事件的次數[1][2]。
實務上,常會將各事件的頻率用圖表或是表格方式表示。
種類
[编辑]累計頻率(cumulative frequency)是事件經排序後,在特定點以下之事件的頻率總和。[3]。
可以將所有事件的頻率繪出,即為頻率分布(frequency distribution)。
頻率分佈
[编辑]頻率分佈(frequency distribution)可以呈現一個分為各互斥分組資料的情形,以及各組的數量。這是呈現未組織資料(例如選舉結果、某區域的的人口收入、畢業生助學貸款金額)的方式。呈現頻率分佈的圖表有直方图、条形图、折線圖及圓餅圖。頻率分佈可以用在量化和質化的資料。
建構頻率分佈
[编辑]- 決定分組組數。若統計的是量化的資料,需要決定分組的組數。組數太多或是太少會無法呈現資料的特性,也有可能很難依該組數來進行分組和分析。理想的分組組數可以參考:(log是以10為基底),或是依直方圖的「方根公式」,其中n是資料的總數(若是像人口資料的統計,用後者會分太多組)。不過這些公式只是作為參,還是需要依實際情形作調整。
- 用資料最大值和最小值計算資料全距(全距=最大值 – 最小值)。全距會用來決定每一組的寬度。
- 決定每一組的寬度,以h來表示,公式為(假設每一組的寬度都相同)。
一般來說每一組的寬度會相同。所有的組總和需要從數據中的最小值到最大值都包括在內。在頻率分佈上一般會傾向使用相同的組寬,不過有些時候使用不同的組寬(例如使用對數區問),才能完整的看到數據的資訊,避免有許多區間沒有資料,或是只有極少量資料的情形[4]。
- 決定第一組的下限。一般會小於或等於最小值。
- 每觀測一個資料,就在其對應的分組加上一個記號,直到所有的資料都记錄完為止。
- 依需求計算頻率、相對頻率、累計頻率等資訊。
以下是一些常用來呈現頻率分佈的圖表[5]:
直方圖
[编辑]直方圖是用相鄰的長方形呈現頻率分佈情形的圖表,每一個長方形對應某一區間內的事件,其長方形的高度會對應此區間內的頻率密度(頻率除以區間寬度),因此長方形面積即對應其頻率。直方圖的總面積即為資料的筆數。也可以用直方圖顯示标准化後的相對頻率,可以呈現各分類下的比例,總面積對應1。一般來說會將分類劃分為數個連續不重疊的區間,各區間多半是等寬度的[6]。繪圖時會將直方圖的各長方形繪成是相鄰的,以表示其原始變數的連續性[7]。
条形图
[编辑]条形图(bar chart、bar graph)是用長方形的長度表示變量的統計圖表。長方形長條可以水平放置,也可以垂直放置。
頻率分佈表
[编辑]頻率分佈表是用表格表示抽樣中一個或是多個變數的情形。表格的每一橫行是某個特殊分組或是區間出現的頻率或是次數,這個表可以總結抽樣中的統計分佈。
以下是一個單變數的頻率表,會列出問卷每一種回應的頻率。
排名 | 同意程度 | 頻数 | 频率 |
---|---|---|---|
1 | 強烈同意 | 22 | 0.216 |
2 | 有些同意 | 30 | 0.294 |
3 | 不確定 | 20 | 0.196 |
4 | 有些不同意 | 15 | 0.147 |
5 | 強烈不同意 | 15 | 0.147 |
以下是班上學生的身高的頻率表
身高範圍 | 學生人數 | 累計數量 |
---|---|---|
小於 5.0 英尺 | 25 | 25 |
5.0-5.5 英尺 | 35 | 60 |
5.5-6.0 英尺 | 20 | 80 |
6.0-6.5 英尺 | 20 | 100 |
聯合頻率分佈
[编辑]此章节需要扩充。 |
詮釋
[编辑]在頻率論(Frequentist probability)詮釋的概率下,會假設隨著樣本數量的一直增加,特定事件出現的比率最終會接近一個定值,稱為有限相對頻率(limiting relative frequency)[8][9]。
此一詮釋和貝氏機率的結論相反。頻率學派(frequentist)一詞最早是由Maurice Kendall在1949年開始使用,和Bayesian相對(Maurice稱為是非頻率學派,non-frequentists)[10][11]。他觀察到
- 3....我們可以大致區分兩種主要的態度。一種將概率視為是「理性信念的程度」,或是其他類似的概念...另一種將概率定義成某事件發生的頻率,或是在整體中的相對比例(p. 101)
- ...
- 12. 可能會有人認為,頻率學派和非頻率學派(若我這樣稱呼那些人的話)的差異主要是因為個自聲稱涵蓋領域的不同(p. 104)
- ...
- 我斷言不是這樣的 ... 我認為,頻率學派和非頻率學派本質上的差異是,前者為了避免任何觀點問題,用客觀的特性(可能是真的,也可能是假想的)來定義概率,而後者就不然
應用
[编辑]處理和操作表格化的事件頻率資訊,比處理原始資料會簡單多了。有簡單的演算法可以根據表格計算中位數、平均、標準差等。
假說檢定可以用來評估二個頻率分佈的差異和類似性。評估包括量測集中趋势,像是平均数及中位數,也會評估离散程度,像是標準差和方差。
若頻率分佈的平均和中位數有顯著差異,會稱為頻率分佈具有偏度,另一種說法則是非對稱。頻率分佈的峰度是量測在頻率分佈兩側的量在總量中的比例。若其分佈比常態分佈要分散,則稱為高狹峰(leptokurtic),反之,則為低狹峰(platykurtic)。
字母频率分佈可以用在频率分析上,用以破解密碼,也可以用來比較不同語言之間(例如希臘文、拉丁文)的字母相對頻率。
相關條目
[编辑]參考資料
[编辑]- ^ 1.0 1.1 茆诗松,程依明,濮晓龙.概率论与数理统计教程 [M]. 3版.北京:高等教育出版社, 2019 (2022): 13-14. 978-7-04-051148-2.
- ^ 频数 [DB/OL] [2024] // 陈至立.辞海. 7版网络版.上海:上海辞书出版社, 2020.
- ^ Kenney, J. F.; Keeping, E. S. Mathematics of Statistics, Part 1 3rd. Princeton, NJ: Van Nostrand Reinhold. 1962: 17–19.
- ^ Manikandan, S. Frequency distribution. Journal of Pharmacology & Pharmacotherapeutics. 1 January 2011, 2 (1): 54–55. ISSN 0976-500X. PMC 3117575 . PMID 21701652. doi:10.4103/0976-500X.77120 .
- ^ Carlson, K. and Winquist, J. (2014) An Introduction to Statistics. SAGE Publications, Inc. Chapter 1: Introduction to Statistics and Frequency Distributions
- ^ Howitt, D. and Cramer, D. (2008) Statistics in Psychology. Prentice Hall
- ^ Charles Stangor (2011) "Research Methods For The Behavioral Sciences". Wadsworth, Cengage Learning. ISBN 9780840031976.
- ^ von Mises, Richard (1939) Probability, Statistics, and Truth (in German) (English translation, 1981: Dover Publications; 2 Revised edition. ISBN 0486242145) (p.14)
- ^ The Frequency theory Chapter 5; discussed in Donald Gilles, Philosophical theories of probability (2000), Psychology Press. ISBN 9780415182751 , p. 88.
- ^ Earliest Known Uses of Some of the Words of Probability & Statistics. [2024-06-26]. (原始内容存档于2023-09-09).
- ^ Kendall, Maurice George. On the Reconciliation of Theories of Probability. Biometrika (Biometrika Trust). 1949, 36 (1/2): 101–116. JSTOR 2332534. doi:10.1093/biomet/36.1-2.101.