跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

A*搜尋演算法

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自A*搜尋算法
A*搜索算法的演示图

A*搜索算法(A* search algorithm)是一種在圖形平面上,有多個節點路徑,求出最低通過成本演算法。常用於遊戲中的NPC的移動計算,或网络游戏的BOT的移動計算上。

该算法综合了最良優先搜索英语Best-first searchDijkstra算法的优点:在进行启发式搜索提高算法效率的同时,可以保证找到一条最优路径(需要评估函数满足单调性)。

在此算法中,如果以表示从起点到任意顶点的实际距离,表示任意顶点到目标顶点的估算距离(根据所采用的评估函数的不同而变化),那么A*算法的估算函数为:

这个公式遵循以下特性:

  • 如果为0,即只计算任意顶点到目标的评估函数,而不计算起点到顶点的距离,则算法转化为使用贪心策略的最良優先搜索英语Best-first search,速度最快,但可能得不出最优解;
  • 如果不大于顶点到目標頂點的實際距離,则一定可以求出最优解,而且越小,需要计算的节点越多,算法效率越低,常见的评估函数有——欧几里得距离曼哈顿距离切比雪夫距离
  • 如果为0,即只需求出起点到任意顶点的最短路径,而不计算任何评估函数,则转化为最短路问题,即Dijkstra算法,此时需要计算最多的顶点;

虛擬碼

[编辑]
//Matlab語言
 function A*(start,goal)
     closedset := the empty set                                        //已经被估算的節點集合
     openset := set containing the initial node                        //將要被估算的節點集合,初始只包含start
     came_from := empty map
     g_score[start] := 0                                               //g(n)
     h_score[start] := heuristic_estimate_of_distance(start, goal)     //通過估計函數 估計h(start)
     f_score[start] := h_score[start]                                  //f(n)=h(n)+g(n),由於g(n)=0,所以省略
     while openset is not empty                                        //當將被估算的節點存在時,執行循環
         x := the node in openset having the lowest f_score[] value    //在將被估計的集合中找到f(x)最小的節點
         if x = goal                                                   //x為終點,執行
             return reconstruct_path(came_from,goal)                   //返回到x的最佳路徑
         remove x from openset                                         //x節點從將被估算的節點中刪除
         add x to closedset                                            //x節點插入已經被估算的節點
         for each y in neighbor_nodes(x)                               //循環遍歷與x相鄰節點
             if y in closedset                                         //y已被估值,跳過
                 continue
             tentative_g_score := g_score[x] + dist_between(x,y)       //從起點到節點y的距離

             if y not in openset                                       //y不是將被估算的節點
                 tentative_is_better := true                           //暫時判斷為更好
             elseif tentative_g_score < g_score[y]                     //如果起點到y的距離小於y的實際距離
                 tentative_is_better := true                           //暫時判斷為更好
             else
                 tentative_is_better := false                          //否則判斷為更差
             if tentative_is_better = true                             //如果判斷為更好
                 came_from[y] := x                                     //y設為x的子節點
                 g_score[y] := tentative_g_score                       //更新y到原點的距離
                 h_score[y] := heuristic_estimate_of_distance(y, goal) //估計y到終點的距離
                 f_score[y] := g_score[y] + h_score[y]
                 add y to openset                                      //y插入將被估算的節點中
     return failure
 
 function reconstruct_path(came_from,current_node)
     if came_from[current_node] is set
         p = reconstruct_path(came_from,came_from[current_node])
         return (p + current_node)
     else
         return current_node

相關連結

[编辑]

外部連結

[编辑]