跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

File:Embedded Outflow in Herbig-Haro object HH 46 47.jpg

页面内容不支持其他语言。
這個文件來自維基共享資源
维基百科,自由的百科全书

原始文件 (1,500 × 1,200像素,文件大小:990 KB,MIME类型:image/jpeg


摘要

描述
English: This image from NASA's Spitzer Space Telescope transforms a dark cloud into a silky translucent veil, revealing the molecular outflow from an otherwise hidden newborn star. Using near-infrared light, Spitzer pierces through the dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic star, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

The Spitzer image was obtained with the infrared array camera. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red.

HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

The 8-micron channel of the infrared array camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron emission corresponds to the lower right edge of the dark cloud in the visible-light picture.

Outflows are fascinating objects, since they characterize one of the most energetic phases of the formation of low-mass stars (like our Sun). The jets arising from these protostars can reach sizes of trillions of miles and velocities of hundreds of thousands miles per hour. Outflows are clear evidence of the presence of a process that creates supersonic beams of gas. This mechanism is tightly bound to the presence of circumstellar discs which surround the young stars. Such discs are likely to contain the materials from which planetary systems form. Our Sun probably underwent a similar process some 4.5 billion years ago. Hence the interest in understanding how quickly and efficiently this mass accretion and loss process takes place in protostars.
日期
来源 http://www.spitzer.caltech.edu/images/1090-ssc2003-06f-Embedded-Outflow-in-HH-46-47
作者 NASA/JPL-Caltech/A. Noriega-Crespo (SSC/Caltech), H. Kline (JPL), Digital Sky Survey

许可协议

Public domain 本文件完全由NASA创作,在美国属于公有领域。根据NASA的版权方针,NASA的材料除非另有声明否则不受版权保护。(参见Template:PD-USGov/zhNASA版权方针页面JPL图片使用方针。)
警告:

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

image/jpeg

1,013,912 字节

1,200 像素

1,500 像素

ec68214e4cec2e66212c235c17650c38997efe85

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2007年7月5日 (四) 21:122007年7月5日 (四) 21:12版本的缩略图1,500 × 1,200(990 KB)AnzibanonziThis image from NASA's Spitzer Space Telescope transforms a dark cloud into a silky translucent veil, revealing the molecular outflow from an otherwise hidden newborn star. Using near-infrared light, Spitzer pierces through the dark cloud to detect the em

以下2个页面使用本文件:

全域文件用途

以下其他wiki使用此文件:

元数据