跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

微调 (深度学习)

维基百科,自由的百科全书

微调(又称大模型微调,英語:fine-tuning)是深度学习迁移学习的一种方法,其中预训练模型的权重会在新数据上进行训练[1]。微调可以在整个神经网络上执行,也可以仅在其部分层上执行,此时未进行微调的层会被“冻结”(在反向传播步骤中不更新)[2]。模型还可以通过“适配器”进行增强,适配器的参数远少于原始模型,通过调整适配器的权重并保持模型的其余权重不变的方式,以参数有效的方式进行微调[3]

对于一些体系结构,比如卷积神经网络,通常会将较早的层(靠近输入层的层)冻结,因为它们捕捉到较低层次的特征,而较后的层通常能够识别更高层次的特征,这些特征可能更相关于模型训练的任务。[2][4]

对于在大型和通用语料库上进行预训练的模型,通常通过重用模型的参数作为起点,并添加一个从头开始训练的任务特定层进行微调。[5] 对整个模型进行微调也很常见,通常会产生更好的结果,但计算成本更高。[6]

微调通常通过监督学习完成,但也有使用弱监督英语Weak supervision进行模型微调的技术。[7] 微调可以与基于人类反馈的强化学习目标相结合,以生成像ChatGPTGPT-3的微调版本)和Sparrow英语Sparrow (bot)语言模型[8][9]

变种

[编辑]

低秩适应

[编辑]

低秩适应(英語:Low-rank adaptation, LoRA)是一种基于适配器的有效微调模型的技术。其基本思想是设计一个低秩矩阵,然后将其添加到原始矩阵中。[10] 在这个背景下,“适配器”是一组低秩矩阵,当添加到基础模型时,产生一个微调模型。它允许在更少的空间需求下接近全模型微调的性能。拥有数十亿参数的语言模型可能只需数百万参数进行LoRA微调。

LoRA-based微调在Stable Diffusion社区中变得流行。[11] 对LoRA的支持正在集成到Hugging Face的Diffusers库中。[12] 对LoRA和类似技术的支持也通过Hugging Face的Parameter-Efficient Fine-Tuning(PEFT)软件包提供给广泛的其他模型。[13]

应用领域

[编辑]

自然语言处理

[编辑]

微调在自然语言处理(NLP)中很常见,特别是在语言建模领域。像OpenAIGPT基础模型系列这样的大型语言模型可以在特定下游NLP任务的数据上进行微调(使用预训练模型的任务),以提高性能,超过未修改的预训练模型。[6]

商业模型

[编辑]

商业化的语言模型, 有时提供商提供了微调API,可以进行微调。 截至2023年6月19日,OpenAIMicrosoft Azure的“Azure OpenAI Service”为其部分模型提供了语言模型微调API,Google Cloud Platform为其部分PaLM模型提供了API,其他提供商也有类似服务。[14][15][16] 但是,并非所有商业模型目前都支持微调。

参见

[编辑]

参考资料

[编辑]
  1. ^ Quinn, Joanne. Dive into deep learning: tools for engagement. Thousand Oaks, California. 2020: 551 [January 10, 2023]. ISBN 978-1-5443-6137-6. (原始内容存档于January 10, 2023). 
  2. ^ 2.0 2.1 CS231n Convolutional Neural Networks for Visual Recognition. cs231n.github.io. [9 March 2023]. (原始内容存档于2023-03-23). 
  3. ^ Liu, Haokun; Tam, Derek; Muqeeth, Mohammed; Mohta, Jay; Huang, Tenghao; Bansal, Mohit; Raffel, Colin A. Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. , 编. Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning (PDF). Advances in Neural Information Processing Systems 35. Curran Associates, Inc.: 1950–1965. 2022 [2023-12-11]. (原始内容存档 (PDF)于2023-12-26). 
  4. ^ Zeiler, Matthew D; Fergus, Rob. Visualizing and Understanding Convolutional Networks. 2013. arXiv:1311.2901可免费查阅. 
  5. ^ Dodge, Jesse; Ilharco, Gabriel; Schwartz, Roy; Farhadi, Ali; Hajishirzi, Hannaneh; Smith, Noah. Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping. 2020. arXiv:2002.06305可免费查阅. 
  6. ^ 6.0 6.1 Dingliwal, Saket; Shenoy, Ashish; Bodapati, Sravan; Gandhe, Ankur; Gadde, Ravi Teja; Kirchhoff, Katrin. Prompt Tuning GPT-2 language model for parameter-efficient domain adaptation of ASR systems. 2021. arXiv:2112.08718可免费查阅. 
  7. ^ Yu, Yue; Zuo, Simiao; Jiang, Haoming; Ren, Wendi; Zhao, Tuo; Zhang, Chao. Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach. 2020. arXiv:2010.07835可免费查阅. 
  8. ^ Introducing ChatGPT. openai.com. [9 March 2023]. (原始内容存档于2023-03-16). 
  9. ^ Glaese, Amelia; McAleese, Nat; Trębacz, Maja; Aslanides, John; Firoiu, Vlad; Ewalds, Timo; Rauh, Maribeth; Weidinger, Laura; Chadwick, Martin; Thacker, Phoebe; Campbell-Gillingham, Lucy; Uesato, Jonathan; Huang, Po-Sen; Comanescu, Ramona; Yang, Fan; See, Abigail; Dathathri, Sumanth; Greig, Rory; Chen, Charlie; Fritz, Doug; Elias, Jaume Sanchez; Green, Richard; Mokrá, Soňa; Fernando, Nicholas; Wu, Boxi; Foley, Rachel; Young, Susannah; Gabriel, Iason; Isaac, William; Mellor, John; Hassabis, Demis; Kavukcuoglu, Koray; Hendricks, Lisa Anne; Irving, Geoffrey. Improving alignment of dialogue agents via targeted human judgements. 2022. arXiv:2209.14375可免费查阅. 
  10. ^ Hu, Edward J.; Shen, Yelong; Wallis, Phillip; Allen-Zhu, Zeyuan; Li, Yuanzhi; Wang, Shean; Wang, Lu; Chen, Weizhu. LoRA: Low-Rank Adaptation of Large Language Models. 2022-01-28 [2023-12-12]. arXiv:2106.09685可免费查阅. (原始内容存档于2023-03-15) (英语). 
  11. ^ Ryu, Simo. Using Low-rank adaptation to quickly fine-tune diffusion models. GitHub. February 13, 2023 [June 19, 2023]. (原始内容存档于2024-01-06). 
  12. ^ Cuenca, Pedro; Paul, Sayak. Using LoRA for Efficient Stable Diffusion Fine-Tuning. Hugging Face. January 26, 2023 [June 19, 2023]. (原始内容存档于2023-12-31). 
  13. ^ Parameter-Efficient Fine-Tuning using 🤗 PEFT. huggingface.co. [2023-06-20]. (原始内容存档于2023-11-22). 
  14. ^ Fine-tuning. OpenAI. [2023-06-19]. (原始内容存档于2023-12-29). 
  15. ^ Learn how to customize a model for your application. Microsoft. [2023-06-19]. (原始内容存档于2023-06-19). 
  16. ^ Tune text foundation models. [2023-06-19]. (原始内容存档于2023-12-22).