跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

有理数根定理

维基百科,自由的百科全书

代数中,有理根定理(或有理根检验有理零定理有理零检验p/q定理)陈述了对多项式方程有理数解的约束

具有整数系数 .方程的解也称为左侧多项式或零点。

该定理指出每个有理根,写成最低项使互质,满足:

  • 常数项的整数因子
  • 是首项的整数因子

有理根定理是高斯定理关于多项式分解的一个特例(对于单个线性因子)。

整数根定理(integral root theorem) 是有理根定理当最高次项系数的特例。

应用

[编辑]

该定理用于查找多项式的所有有理根(如果有的话)。它给出了有限数量的可能分数,可以检查它们是否是根。如果找到有理根x = r ,则可以使用多项式长除法从多项式中分解出线性多项式(xr) ,从而得到一个更低阶的多项式,其根也是原始多项式的根。

三次方程

[编辑]

一般三次方程

具有整数系数的问题在复平面上有三个解。如果有理根测试找不到有理解,那么用代数表示解的唯一方法是使用立方根。但是,如果测试找到有理解r ,则分解出(xr)会留下一个二次多项式,其两个根是用二次公式找到的,是剩余的两个立方根,避免了立方根。

证明

[编辑]

初等证明

[编辑]

假设P(p/q) = 0对于一些互质p, q

要清除分母,将两边乘以qn

a0项移到右侧并分解出左侧的p会得到:

因此, p整除a0qn 。但是pq互质,因此与qn互质,因此根据欧几里德引理, p必须整除剩余的因子a0

另一方面,将an移到右侧并在左侧分解出q会产生:

如前所述,可以得出q整除an[1]

使用高斯定理证明

[编辑]

如果有一个非平凡的因子除以多项式的所有系数,则可以除以系数的最大公约数,从而获得高斯定理意义上的本原多项式;这不会改变有理根的集合,只会加强整除条件。该引理表示,如果Q[X]中的多项式因子,那么它也会将Z[X]中的因子作为本原多项式的乘积。现在,任何有理根p/q都对应于多项式Q[X]中的 1 次因子,其原始表示则为qxp ,假设pq互质。但是qxpZ[X]中的任何倍数都有可被q整除的首项和可被p整除的常数项,这证明了命题。这个论点表明,更一般地, P的任何不可约因子都可以假设具有整数系数,并且最高次系数和常数系数整除P的最高次系数和常数系数.

例子

[编辑]

一、

[编辑]

在多项式


任何完全约化的有理根都必须有一个能整除 1 的分子和一个能整除 2 的分母。因此,唯一可能的有理根是±1/2 和±1;由于这些都不等于多项式为零,因此它没有有理根。

二、

[编辑]

在多项式


唯一可能的有理根将具有除以 6 的分子和除以 1 的分母,将可能性限制为 ±1、±2、±3 和 ±6。其中,1、2 和 –3 使多项式等于零,因此是它的有理根。 (实际上,这些是它唯一的根,因为三次方只有三个根;一般来说,多项式可能有一些有理根和一些无理根。 )

三、

[编辑]

多项式

的每个有理根

必须在以下符号表示的数字中:

这 8 个候选根x = r可以通过评估P(r)来测试,例如使用Horner 的方法。结果恰好有一个P(r) = 0

这个过程可能会更有效率:如果P(r) ≠ 0 ,它可以用来缩短剩余候选者的列表。 [2]例如, x = 1不起作用,因为P(1) = 1 。代入x = 1 + t产生一个多项式 t具有常数项P(1) = 1 ,而t3的系数与x3的系数保持相同。应用有理根定理从而产生可能的根 , 以便

实根必须出现在两个列表中,因此有理根候选列表已缩小到只有x = 2x = 2/3

如果找到k ≥ 1有理根,Horner 方法也会产生一个nk次多项式,其根与有理根一起恰好是原始多项式的根。如果没有一个候选者是解决方案,则不可能有合理的解决方案。


笔记

[编辑]
  1. ^ Arnold, D.; Arnold, G. Four unit mathematics. Edward Arnold. 1993: 120–121. ISBN 0-340-54335-3. 
  2. ^ King, Jeremy D. Integer roots of polynomials. Mathematical Gazette. November 2006, 90: 455–456. 

参考

[编辑]
  • Charles D. Miller、Margaret L. Lial、David I. Schneider:大学代数基础。 Scott & Foresman/Little & Brown 高等教育,第 3 版 1990,ISBN 0-673-38638-4 ,页数 216–221
  • Phillip S. Jones, Jack D. Bedient:初等数学的历史根源。多佛信使出版社 1998 年,ISBN 0-486-25563-8 ,页数 116–117(online copy,第116頁,載於Google圖書
  • Ron Larson:微积分:一种应用方法。圣智学习 2007,ISBN 978-0-618-95825-2 ,第 23–24(online copy,第23頁,載於Google圖書

外链

[编辑]