赵双任
此條目可能不符合成為維基百科傳記的標準。 (2024年10月29日) |
赵双任(1954年—),1976年毕业于北京工业学院(现北京理工大学)电子机械专业,1987年于西北电讯工程学院(现西安电子科技大学)电磁场与微波专业研究生毕业,1998年获得西安交通大学生物医学工程学博士学位。1976-1984 赵在西安东方机械厂任技术员。1987至1990年间,赵在电子部39所从事天线设计和研究工作。1990年到1997年期间,在德国尤利西核能研究院担任研究员。之后,赵在德国、加拿大和美国作为工程师,研究员从事脑磁图、正电子成像、CT图像重建、图像分割和图像对准技术,病毒显微成像等方面的研究工作。另外还从事芯片光刻仿真,GPS 汽车导航,铁路探伤,GPU CUDA编程等技术。
主要理论成果
[编辑]光子的电磁波理论
[编辑]1987年,赵双任提出并发表了电磁场的“互能定理”[1], [2], [3],公式如下:
他还提出了两个电磁场内积的概念:
2017年,赵双任将该定理扩展为“互能流定理”[4],其表达式为:
赵双任提出的电磁场定律指出,电磁辐射不溢出宇宙,
并推导了相关公式。他认为电磁波的电场与磁场应保持90度相位差。赵认为经典电磁理论把磁场定义为矢量势的旋度有局限性,只在准静态电磁场条件下有效。这个磁场其实是环路上的平均磁场,而不是真正的磁场。赵通过互能流定律重新定义了电磁波的磁场。 [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]。
对经典电磁场理论的磁场的修正
[编辑]在频域滞后矢量势和超前的矢量势定义为:
其中频域电流定义为 。
赵认为经典电磁理论中把矢量势的旋度定义为磁场是有局限性的。这个定义只对准静态条件成立。其实矢量势的旋度不是磁场,而是沿着环路上的平均磁场:
磁场上面一横表示沿着环路的平均磁场,上式第一部分是辐射近场,第二部分是辐射远场。平均磁场在准静态条件下和磁场一致。而(真正正确的)磁场可以由平均磁场修正得到:
下标 表示近场, 表示远场。类似的对于超前势,
修正公式为:
赵认为,惠勒费曼在吸收体理论 [25] [26] 中提出的电流辐射一半滞后波一半超前波是正确的。
是电场, 是滞后的电场, 是超前的电场。
电磁波的磁场的定义和测量
[编辑]这个(真正正确的)电磁波的磁场的定义可以由互能流密度定义,即
其中 是探测偶极子接收天线的磁场。假定电磁波的电场为
赵不假定电磁波的磁场和电场同相位,而认为,
其中 是一个包含相位的复数。偶极子接收天线 的负载是纯电阻的,因此上述互能流密度的两项都是实数。
是被测磁场,根据上式,在测量接收天线位置, 的相位和 相同。 和 同相位。 和接收偶极子天线的电流同相位。所以有:
所以
。
这样可以定出磁场 的相位。所以磁场 式中的相位因子可以定出为
这和前面修正的滞后磁场的结果一致。至于磁场的大小 和平均磁场的大小 一致。这样按照赵的理论电磁波是无功功率的。因为电磁波的电场和磁场保持90度相位差。电磁波不是电场和磁场相位相同!电磁波是无功功率的,那么电磁波平均地看是不传递能量的。能量是由互能流传递的,而赵认为互能流是粒子。因此粒子包括光子传递能量,而波不传递能量。这样波就不必是概率的,也不必坍缩。这对波粒子二象性问题的诠释提供了一个正确的选择。
量子力学
[编辑]自2017年起,赵双任开始用互能流解释量子力学,认为任何粒子都是一种互能流。光子是与麦克斯韦方程相关的互能流,电子则是与薛定谔方程或狄拉克方程相关的互能流。他将电磁场理论中的互能流定律推广应用到量子力学,并将能量流与互能流进行了统一[27]。
医学成像
[编辑]在CT图像重建方面,赵双任提出了基于傅里叶变换的扇形光束和锥形光束CT图像重建算法。该算法 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] 获得大量引用。 另外在脑磁图的研究方面赵也做了大量工作 [40] [41] [42] [43] [44] 。
参考文献
[编辑]- ^ 赵双任. 互能定理在球面波辐射场展开法中的应用. 电子学报. 1987.
- ^ 赵双任. 应用电磁场“互能公式”简化电磁场公式的符号表示. 电子科学学刊 现名:电子与信息学报. 1989.
- ^ 赵双任. 电磁场“互能公式”在平面波展开理论中的应用. 电子科学学刊 现名:电子与信息学报. 1989.
- ^ 赵双任. A new interpretation of quantum physics: Mutual energy flow interpretation.. American Journal of Modern Physics and Application. 2017.
- ^ Shuang-ren Zhao. Photon Can Be Described as the Normalized Mutual Energy Flow. Journal of Modern Physics. 2020, 11 (5): DOI: 10.4236/jmp.2020.115043.
- ^ Shuang-ren Zhao. A solution for wave-particle duality using the mutual energy principle corresponding to Schrödinger equation. Physics Tomorrow Letter. 2020. doi:10.1490/ptl.dxdoi.com/08-02tpl-sci.
- ^ Shuang-ren Zhao. Huygens principle based on mutual energy flow theorem and the comparison to the path integral. Physics Tomorrow Letter. 2020.
- ^ Shuang-ren Zhao. Solve the Maxwell's equations and Schrödinger's equation but avoiding the Sommerfeld radiation condition. Theoretical Physics Letters. 2022, 26 (4).
- ^ Shuang-ren Zhao. Mutual stress flow theorem of electromagnetic field and extension of Newton's third law. Theoretical Physics Letters. 2022, 10 (7).
- ^ Shuang-ren Zhao. The paradox that induced electric field has energy in Maxwell theory of classical electromagnetic field is shown and solved (PDF). International Journal of Physics. 2022, 10 (4): 204–217.
- ^ Shuang-ren Zhao. The theory of mutual energy flow proves that macroscopic electromagnetic waves are composed of photons (PDF). International Journal of Physics. 2022, 10 (5).
- ^ Shuang-ren Zhao. The Contradictions in Poynting Theorem and Classical Electromagnetic Field Theory (PDF). International Journal of Physics. 2022, 10 (5): 242–251.
- ^ Shuang-ren Zhao. Energy Flow and Photons from Primary Coil to Secondary Coil of Transformer. International Journal of Physics. 2023, 11 (1): 24–39. doi:10.12691/ijp-11-1-4.
- ^ Shuang-ren Zhao. Energy Conservation Law and Energy Flow Theorem for Transformer, Antenna and Photon. International Journal of Physics. 2023, 11 (2): 56–66. doi:10.12691/ijp-11-2-1.
- ^ Shuang-ren Zhao. Experiment to Prove the Existence of the Advanced Wave and Experiment to Prove the Wrong Definition of Magnetic Field in Maxwell’s Theory. International Journal of Physics. 2023, 11 (2): 73–80. doi:10.12691/ijp-11-2-3.
- ^ Shuang-ren Zhao. Calculate the Energy Flow of Transformers, Antenna Systems, and Photons by Redefining the Radiated Electromagnetic Field of Plane-sheet Current. International Journal of Physics. 2023, 11 (3): 136–152. doi:10.12691/ijp-11-3-3.
- ^ Shuang-ren Zhao. Definition, Measurement and Calibration of Magnetic Field of Electromagnetic Wave – Correct the Defects of Maxwell’s Classical Electromagnetic Field Theory. International Journal of Physics. 2023, 11 (3): 106–135. doi:10.12691/ijp-11-3-2.
- ^ Shuang-ren Zhao. Calculate the Energy Flow of Transformers, Antenna Systems, and Photons Through a New Interpretation of the Classical Electromagnetic Fields. International Journal of Physics. 2023, 11 (5): 261–273. doi:10.12691/ijp-11-5-5.
- ^ Shuang-ren Zhao. Discussion on the Correction of Classical Electromagnetic Wave Theory Through Transmission Lines. International Journal of Physics. 2024, 12 (1): 1–18. doi:10.12691/ijp-12-1-1.
- ^ Zhao, S. R. New Law or Boundary Condition of Electromagnetic Wave Theory: Radiation Shall Not Overflow The Universe (PDF). OA Journal of Applied Science and Technology. 2024, 2 (1): 01–46.
- ^ Zhao, S. R. Distinguish Between The Average Magnetic Field On A Circular Coil And The Original Definition Of Magnetic Field, And Correct The Serious Loopholes In Classical Electromagnetic Theory (PDF). OA Journal of Applied Science and Technology. 2024, 2 (1): 01–29.
- ^ Zhao, S. R. Using the Method of Contradiction to prove that the Definition of Magnetic Field in Maxwell’s Theory is Incorrect. OA Journal of Applied Science and Technology. 2024, 2 (2): 1–12.
- ^ Zhao, S. R. Particles Are Mutual Energy Flows and Waves Are Reactive Power without Collapse. OA Journal of Applied Science and Technology. 2024, 2 (2): 01–22.
- ^ 赵双任. 光子的电磁波理论. lulu.com. 2024.
- ^ Wheeler, J. A. and Feynman, R. P., "", Rev. Mod. Phys. 17 (1945), pp. 157.
- ^ Wheeler, J. A. and Feynman, R. P., "", Rev. Mod. Phys. 21 (1949), pp. 425.
- ^ 赵双任. Electromagnetic Wave Theory of Photons. Amazon. 2024.
- ^ Shuangren Zhao, Kang Yang, Xintie Yang. Reconstruction from truncated projections using mixed extrapolations of exponential and quadratic functions.. J Xray Sci Technol. 2011.
- ^ Shuangren Zhao, Kang Yang, Dazong Jiang, Xintie Yang. Interior reconstruction using local inverse. Journal Name. 2011, 19 (1): 69–90S.
- ^ Shuangren Zhao, Jasjit Suri. Improved 3D Reconstruction Algorithm for Ultrasound B-scan Image with Freehand Tracker. SPIE Medical Imaging. 2009.
- ^ S. Zhao, D. Jaffray. Iterative reconstruction and reprojection for truncated projections. Medical Physics. 2004, 31: P1719.
|conference=
被忽略 (帮助) - ^ Shuang-Ren Zhao, H. Halling. Reconstruction of cone beam projections with free source path by a generalized Fourier method. Proceedings of the 1995 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine: 323–327. 1995.
- ^ Zhao, S.-R., H. Halling. A new Fourier method for fan beam reconstruction. 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record 2: 1287–1291. 1995.
- ^ Zhao, S.-R., H. Halling. A New Fourier Transform Method for Fan Beam Tomography. 1995 Nuclear Science Symposium and Medical Imaging Conference.
- ^ Zhao, S.-R., H. Halling. Tomography (PET, SPECT, X-ray CT), imaging restoration and coded aperture (报告). Interner Bericht KFA-ZEL-IB-500994.
- ^ Zhao, S.-R. Fan beam and cone beam imaging reconstruction using the method of the back projection on frequency domain (PhD论文). People's Republic of China: Xi'an Jiao Tong University. 1998.
- ^ Zhao, S.-R., H. Halling. Image Reconstruction for Fan Beam Tomography Using a New Integral Transform Pair. M.M. Lavrentev (编). International Symposium on Computerized Tomography. Novosibirsk, Russia: 125. August 10-14.
- ^ Zhao, S.-R., H. Halling. A New Fourier Method for Fan Beam Reconstruction. M.M. Lavrentev (编). International Symposium on Computerized Tomography. Novosibirsk, Russia: 125. August 10-14.
- ^ Shuangren Zhao, Xintie Yang. Iterative reconstruction in all sub-regions. SCIENCEPAPER ONLINE. 2006, 1 (4).
- ^ Shuang-Ren Zhao, Horst Halling. Minimum L1 Norm MEG Reconstruction Minimising Signal Deviation Using A Reduced Lead Field. 18th Annual International Conference IEEE Engineering in Medicine and Biology Society. October 31, 1996.
- ^ S.R. Zhao, H. Heer, A. A. Ioannides, M. Wagener, H. Halling, H.-W. Müller-Gärtner. Interpolation of Magnetic Fields and Its Gradients for MEG Data with Spline Functions. Meeting of Bildverarbeitung für Medizin Algorithmen, Systeme, Anwendungen. RWTH Aachen. November 8, 1996.
- ^ Shuang-Ren Zhao, Johannes Grotendorst, Horst Halling. Calculation of the Potential Distribution for a Three-Layer Spherical Volume Conductor. Maple Technical Newsletter. 1995, 2 (1).
- ^ Zhao Shuangren, Jiang Dazong. Best Minimization to Locate the Brain Sources of Magnetic Waves. Biomedical Engineering Magazine (China). 1999, 16 (4).
- ^ Zhao Shuangren, Jiang Dazong. Locating the Brain Sources by Applying the Combination of the Method of Minimization with Three Object Functions and the Method of Singular Value Decomposition to the Signals of Brain Magnetic Fields. Beijing Biomedical Engineering Magazine. 1999, 18 (2).