跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

施瓦茨三角形

本页使用了标题或全文手工转换
维基百科,自由的百科全书

几何学中,施瓦茨三角形(英语:Schwarz triangle)是一个球面三角形,可用于球面镶嵌,透过在其边缘反射,但是可能会重叠。他们被归类于施瓦茨1873[1]

施瓦茨三角形除了可以定义在球面之外,也可以定义于欧几里得平面或双曲面,而做成便面镶嵌或双曲面镶嵌。在球面上的每个施瓦茨三角形定义了一个有限群,而在欧氏或双曲平面,则会定义出一个无限群。

施瓦茨三角形是由三个有理数(p q r)来代表每个顶点的角度。值n/d表示的顶角为半圆的d/n,“2”表是一个直角。若p、q、r皆为整数,则将其称为莫比乌斯三角形(英语:Möbius triangle)并且对应于一个没有重叠的镶嵌,其对称群称为一个三角群。在球面移共有3个莫比乌斯三角形加一个单参数族;在欧氏平面上有三个莫比乌斯三角形;而在罗氏双曲空间中有三个参数族的莫比乌斯三角形,并没有特例。

空间

[编辑]

施瓦茨三角形所属的空间取决于其p、q、r值:

 球面
 欧氏平面
 罗氏平面(双曲面)

图形表示

[编辑]

施瓦茨三角形可以用三角图来表示。每个节点表示施瓦茨三角形的边(镜射)。每条边是由相应的反射阶数合理的数值标示,即π/顶点角。


Schwarz triangle (p q r) on sphere

Schwarz triangle graph

2阶边代表垂直于镜射,可以在该图中被忽略。在考克斯特 - 迪肯符号表示三角形图中会隐藏2阶边。 考克斯特组可用于更简单的符号,如(p q r)的循环图,(p q 2) = [p,q](直角三角形),和(p 2 2) = [p]×[]。

参考文献

[编辑]
  1. ^ Schwarz, H. A., Ueber diejenigen Fälle in welchen die Gaussichen hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, Journal für die reine und angewandte Mathematik, 1873, 75: 292–335 [2014-05-28], ISSN 0075-4102, (原始内容存档于2020-08-09)  (Note that Coxeter references this as "Zur Theorie der hypergeometrischen Reihe", which is the short title used in the journal page headers)

外部链接

[编辑]