正七边形镶嵌
类别 | 双曲正镶嵌 | |||
---|---|---|---|---|
对偶多面体 | 七阶三角形镶嵌 | |||
识别 | ||||
鲍尔斯缩写 | heat | |||
数学表示法 | ||||
考克斯特符号 | ||||
施莱夫利符号 | {7,3} | |||
威佐夫符号 | 3 | 7 2 | |||
组成与布局 | ||||
顶点图 | 73 | |||
对称性 | ||||
对称群 | [7,3], (*732) | |||
图像 | ||||
| ||||
在几何学中,正七边形镶嵌(英语:Heptagonal tiling)是一种由正七边形拼合,并且将正七边形重复排列组合,并让图形完全拼合,而且没有空隙或重叠的几何构造。
正七边形镶嵌是一种双曲正镶嵌,由正七边形组成,在施莱夫利符号中以{7,3}来表示,因为每个顶点周围都有3个正七边形。
三个正七边形由于超过360度,因此无法在平面作出,但若硬将正七边形边对边接合,将会变成一个马鞍形,且每个顶点皆会落在一个双曲抛物面上。
正七边形镶嵌无法在一个平面上构造,因为每个顶点的角度超过了360度,但可以在一个双曲抛物面上构造[1],因此正七边形镶嵌也是罗式几何或双曲几何中讨论的几何构造。
一个正七边形镶嵌的纸模型,可以看到它不是一个平面,像是一个马鞍面 |
图像
[编辑]庞加莱半平面模型 |
庞加莱圆盘模型 |
凯莱-克莱因模型 |
一个正七边形镶嵌 (黑线)在庞加莱半平面模型上
一个正七边形镶嵌 (蓝线)在双曲抛物面的庞加莱圆盘模型上
相关半正镶嵌
[编辑]正七边形镶嵌在拓扑上与一系列用施莱夫利符号{n,3}与{7,n}表示的(广义)多面体一直延伸到双曲镶嵌:
多面体 | 欧式镶嵌 | 双曲镶嵌 | ||||||
---|---|---|---|---|---|---|---|---|
{2,3} |
{3,3} |
{4,3} |
{5,3} |
{6,3} |
{7,3} |
{8,3} |
... | {∞,3} |
当n大于2时,所有{7,n}都是双曲镶嵌:
{7,3} |
{7,4} |
{7,5} |
{7,6} |
{7,7} |
正七边形镶嵌可以透过截角操作或其他康威变换得到一系列与之相关的半正镶嵌,其与正七边形镶嵌拥有相似的对称性[7,3](*732)或[7,3]+(732):
对称群:[7,3], (*732) | [7,3]+, (732) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
{7,3} | t{7,3} | r{7,3} | 2t{7,3}=t{3,7} | 2r{7,3}={3,7} | rr{7,3} | tr{7,3} | sr{7,3} | |||
半正对偶 | ||||||||||
V73 | V3.14.14 | V3.7.3.7 | V6.6.7 | V37 | V3.4.7.4 | V4.6.14 | V3.3.3.3.7 |
赫尔维茨曲面
[编辑]七阶三角形镶嵌的对称群是(2,3,7)三角群,且其根本域为(2,3,7)施瓦茨三角形。这是最小的双曲施瓦茨三角形,因此,由赫尔维茨的同构定理的证明,该镶嵌完全密铺整个赫尔维茨曲面(黎曼曲面与最大对称群),给出一个三角对称群等于其构群为黎曼曲面。其中最小的赫尔维茨曲面是克莱因商(Klein quartic)亏格3、168阶、包含56个七边形镶嵌在一起,形成24个顶点。
其对偶七阶三角形镶嵌具有相同的对称群,因而产生三角形镶嵌赫尔维曲面。
参见
[编辑]参考文献
[编辑]- ^ Arlan Ramsay, Robert D. Richtmyer, Introduction to Hyperbolic Geometry, Springer; 1 edition (December 16, 1995)
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Chapter 10: Regular honeycombs in hyperbolic space. The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
- 埃里克·韦斯坦因. Hyperbolic tiling. MathWorld.
- 埃里克·韦斯坦因. Poincaré hyperbolic disk. MathWorld.
- Hyperbolic and Spherical Tiling Gallery (页面存档备份,存于互联网档案馆)
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings (页面存档备份,存于互联网档案馆)
- Hyperbolic Planar Tessellations, Don Hatch (页面存档备份,存于互联网档案馆)