跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

假單胞菌屬

維基百科,自由的百科全書

假單胞菌屬
瓊脂板上的綠膿桿菌菌落
科學分類 編輯
域: 細菌域 Bacteria
門: 假單胞菌門 Pseudomonadota
綱: γ-變形菌綱 Gammaproteobacteria
目: 假單胞菌目 Pseudomonadales
科: 假單胞菌科 Pseudomonadaceae
屬: 假單胞菌屬 Pseudomonas
Migula, 1894
模式種
綠膿桿菌 Pseudomonas aeruginosa
(Schroeter, 1872) Migula, 1900

見正文

異名
  • Flavimonas Holmes et al. 1987
  • Chryseomonas Holmes et al. 1986
  • Serpens Hespell 1977

假單胞菌屬(學名:Pseudomonas)是一類需氧的革蘭氏陰性細菌,它位於假單胞菌科下,已知物種有191個。該屬微生物具有極其豐富的代謝多樣性,這些多樣性也使得它們能夠在非常廣闊的生態位中生存。[1]假單胞菌屬的微生物在in vitro條件下很容易培養,這使得該屬成為科研的絕佳材料,比較典型的研究對象有人類致病菌綠膿桿菌、植物致病菌丁香假單胞菌、土壤細菌戀臭假單胞菌以及能促進植物生長的熒光假單胞菌

因為廣泛存在於水體和諸如雙子葉植物等的種子中,假單胞菌屬算是較早發現的一種微生物。假單胞菌屬這個名字最早在1894和1900年由Walter Migula英語Walter Migula給出,當時只是一個很模糊的名詞,它的意思是指「革蘭氏陰性菌,杆狀以及一端有鞭毛的、能夠形成芽孢的細菌」。[2][3]但是後來這些被認為芽孢的東西被證明只是某些儲存物質的顆粒而已。[4]現在我們已經不用這些比較模糊的描述了,而選用綠膿桿菌作為模式種來研究。[4]

分類歷史

[編輯]

和大部分細菌屬一樣,假單胞菌屬的最後共同祖先生活於大約幾億年前。它最早在19世紀末由Walter Migula英語Walter Migula定名,但它名字的來源在當時並未給出,而是最早見於第七版的細菌命名法著作《伯傑氏系統細菌學手冊》(Bergey's Manual of Systematic Microbacteriology英語Bergey's Manual of Systematic Microbacteriology):pseudo來源於希臘語pseudes(ψευδής),即「假」之義;-monas來源於μονάς/μονάδος,為「單個單元」之義;合起來可以把這個名字理解為「假的單元」之義。但是這個名字沒有任何有價值的含義,它並不是說這種生物可能錯誤地會出現單個細胞的狀態,因為它從來就沒有以多細胞的形式存在過。一種比較可靠的猜測是,Migula這樣起名可能單純是想說這種生物是假的「Monas」,Monas是指金藻綱的一種有着微小鞭毛的原生生物。[4]不久之後,其他符合Migula這一模糊定義的微生物也陸續被發現並被加入到這一屬下,但是它們當中的很多在後來通過檢測保守性大分子等方法又被重新劃分到其他門類下了。[5]

最近,利用16S rRNA測序分析手段,很多細菌都被重新劃分分類。[6]有一些原來屬於單胞菌屬和黃色單胞菌屬的細菌又被劃分到了假單胞菌屬下。[7]原來屬於假單胞菌屬的一些菌株現在被分到了伯克氏菌屬羅爾斯通氏菌屬[8][9]

2000年,人們獲得了假單胞菌屬某物種的全基因組序列,其後很多其他菌株的序列也被測出,包括:P. aeruginosa strains PAO1 (2000), P. putida KT2440 (2002), P. protegens Pf-5 (2005), P. syringae pathovar tomato DC3000 (2003), P. syringae pathovar syringae B728a (2005), P. syringae pathovar phaseolica 1448A (2005), P. fluorescens Pf0-1, and P. entomophila L48。[5]

下屬物種

[編輯]

本屬包括以下物種:

綠膿桿菌 Pseudomonas aeruginosa 組
綠葉假單胞菌Pseudomonas chlororaphis 組
熒光假單胞菌 Pseudomonas fluorescens 組
穿孔素假單胞菌Pseudomonas pertucinogena 組
戀臭假單胞菌Pseudomonas putida 組
施氏假單胞菌Pseudomonas stutzeri 組
丁香假單胞菌Pseudomonas syringae組
組的地位未定的菌種:

特徵

[編輯]

假單胞菌屬的總體特徵如下:[50]

假單胞菌屬的其他特徵還有(部分種例外)在鐵限制條件下分泌一種熒光鐵載體。[51]有些假單胞菌屬物種還可以分泌其他類型的鐵載體,如綠膿桿菌可以分泌綠膿桿菌毒素英語Pyocyanin[52],熒光假單胞菌可以分泌一種叫做thioquinolobactin的含硫鐵載體。[53]假單胞菌屬細菌氧化酶測試呈陽性,這也是其一個典型特徵。

假單胞菌屬可能是雲中形成冰晶的最重要的成核劑,它們在全世界的雨雪形成過程中都起着十分重要的作用。[54]

生物膜形成

[編輯]

人們以前認為,假單胞菌屬中所有的種都屬於專性需氧微生物。近來人們在假單胞菌形成的生物膜中發現了例外。[55]在生物膜形成過程中,許多細胞都能夠產生諸如藻朊酸鹽等胞外多糖英語Extracellular polymeric substance,這些多糖可以防止假單胞菌被白細胞吞噬[56]胞外多糖還可以使假單胞菌在食物表面形成一片片難以去除的生物膜。腐壞食物表面的假單胞菌還會使食物聞起來有水果般的味道。

抗生素抗性

[編輯]

因為是革蘭氏陰性細菌,大部分假單胞菌對青黴素以及很多相關β-內酰胺類抗生素都有抗性,但也有部分對哌拉西林亞胺培南替卡西林以及環丙沙星敏感。[56]臨床治療上的其他選擇是諸如妥布黴素慶大黴素以及阿米卡星氨基糖苷類抗生素

因為擁有含有孔蛋白的堅硬細胞壁,假單胞菌能夠在嚴苛的環境下生存。它們的外排泵能夠在許多抗生素發揮作用之前就把它們排出去。

綠膿桿菌是一種機會致病菌,對抗生素表現出低敏感性,較為棘手。[57]一是因為綠膿桿菌細胞壁滲透性低,二是因為其抗生素抗性基因(如mexAB-oprMmexXY[58])可調控多種藥物外排泵協同運作。 除了內生抗性,綠膿桿菌還很容易通過基因組突變或水平基因轉移來產生新的抗性。若要獲得對多種藥物的抗性,就需要發生不同的突變或者接受多個水平基因的轉移。高頻突變傾向於在綠膿桿菌中產生能夠引起慢性感染的抗生素抗性,而在內含子中同時出現多個抗生素抗性基因會使菌株同時具有多種抗性。有些研究發現,有些表型抗性會隨生物膜形成或小的變種菌落而出現。[5]

對鎵元素的敏感性

[編輯]

雖然元素沒有什麼自然的生物學功能,但它能對細胞過程產生類似於三價鐵的影響。當細菌錯誤地將鎵當成鐵吸收後,鎵並不像鐵那樣能夠傳遞電子,這會影響細胞呼吸,最終導致細胞死亡。[59][60]

分類學

[編輯]

在二十世紀初,依靠經典分類方法來描述和鑑定這一微生物屬經歷了一段頗為坎坷的過程。當人們將比對核糖體RNA的大分子組分作為一項評判標準引入後,假單胞菌的分類就豁然開朗了:根據核糖體RNA的相似性,假單胞菌屬可以分為五個核糖體RNA同源組。在Migula命名假單胞菌屬數十年後,被劃歸到該屬下的微生物種數目達到了驚人的比例。目前該屬的微生物種類已經縮減到了不到原來的10%,這其中有不少菌是新命名的,而原來屬於假單胞菌屬的微生物,其實已經沒有幾個目前還在該屬下了。依賴除核糖體RNA外的其他保守大分子的分類方法使得我們能夠控制該屬不至於過於龐大。[5]

致病性

[編輯]

動物病原體

[編輯]

致病菌包括綠膿桿菌、棲稻假單胞菌棲稻假單胞菌英語Pseudomonas oryzihabitans、和變形假單胞菌英語Pseudomonas plecoglossicida。綠膿桿菌是醫院裡一個較為頭疼的問題,因為它對病人來說是侵染力排第二位的致病菌(院內感染[來源請求]。它的致病機理可能和綠膿桿菌分泌的蛋白質有一定關係。該細菌具有種類非常廣泛的分泌系統,它們分泌的許多蛋白質都和臨床株的致病性有關。[61]

植物病原體

[編輯]

丁香假單胞菌是一類植物致病菌。它具有五十多種致病變種英語pathovar,其中許多具有高度的宿主專一性。假單胞菌屬的許多其他物種也能成為植物致病菌,但是丁香假單胞菌是研究最為透徹的一個。

儘管並非嚴格的植物病原體,托拉斯假單胞菌英語Pseudomonas tolaasii在農業上也是一個頭疼的問題,它可以造成栽培蘑菇的細菌性斑點病。[62]能夠造成栽培蘑菇疾病的還有傘菌假單胞菌英語Pseudomonas agarici[63]

作為生防試劑

[編輯]

二十世紀八十年代中期始,假單胞菌屬中的某些物種就開始被用來抑制作物致病菌的生長或定殖。這種應用通常稱作生物防治熒光假單胞菌Pseudomonas protegens英語Pseudomonas protegens的菌株(如CHAO或Pf-5)的生物防治特性是目前研究最為透徹的,儘管人們目前還不十分清楚熒光假單胞菌促進植物生長的過程是如何實現的。這其中可能的方式有:假單胞菌促進了宿主植物的系統抗性,使得植物能夠更好地抵抗病原體;打敗其他的土壤(致病)微生物(如分泌鐵載體铁载体來獲取鐵元素);產生對其他土壤微生物有害的化合物,如吩嗪類抗體或氰化氫。上述所有方式均已得到了實驗證實。[64]

其他具有生物防治功能的假單胞菌還有:綠葉假單胞菌英語Pseudomonas chlororaphis,產生吩嗪類抗生素抑制特定真菌病原體生長[65]桔黃假單胞菌英語Pseudomonas aurantiaca產生一種一直格蘭仕陽性細菌的抗生素類物質di-2,4-diacetylfluoroglucylmethane。[66]

作為生物修複試劑

[編輯]

假單胞菌屬的某些物種能夠代謝環境污染物,它們可以用來進行生物修復。相關物種包括:

食物腐敗

[編輯]

因為具有多種多樣的代謝特徵,能夠在低溫和特殊環境下生存,很多假單胞菌都能夠導致食物腐敗。典型的例子有:莓實假單胞菌英語Pseudomonas fragi可以引起奶製品腐壞,[75]腐臭假單胞菌英語Pseudomonas taetrolens霉味假單胞菌英語Pseudomonas mucidolens能夠造成雞蛋腐臭,[76]隆德假單胞菌英語Pseudomonas lundensis,能夠造成牛奶、奶酪、肉類和魚類的腐敗。[77]

以前屬於該屬的微生物種

[編輯]

最近,人們已經通過16s核糖體RNA測序將許多以前曾經屬於假單胞菌屬的微生物進行了重新分類。[6]這些被移出假單胞菌屬的物種如下所示;點擊相應物種原名會出現它們目前的新名字:

α 變形菌: P. abikonensis英語Sphingomonas abikonensis, P. aminovorans英語Aminobacter aminovorans, P. azotocolligans英語Sphingomonas trueperi, P. carboxydohydrogena英語Bradyrhizobium, P. carboxidovorans英語Oligotropha carboxidovorans, P. compransoris英語Zavarzinia compransoris, P. diminuta英語Brevundimonas diminuta, P. echinoides英語Sphingomonas echinoides, P. extorquens英語Methylobacterium extorquens, P. lindneri英語Zymomonas mobilis, P. mesophilica英語Methylobacterium mesophilicum, P. paucimobilis英語Sphingomonas paucimobilis, P. radiora英語Methylobacterium radiotolerans, P. rhodos英語Methylobacterium rhodinum, P. riboflavina英語Devosia riboflavina, P. rosea英語Methylobacterium extorquens, P. vesicularis英語Brevundimonas vesicularis.

β 變形菌: P. acidovorans英語Comamonas acidovorans, P. alliicola英語Burkholderia gladioli, P. antimicrobica英語Burkholderia gladioli, P. avenae英語Acidovorax avenae, P. butanovorae英語Thauera, P. caryophylli英語Burkholderia caryophylli, P. cattleyae英語Acidovorax avenae, P. cepacia英語Burkholderia cepacia, P. cocovenenans英語Burkholderia cocovenenans, P. delafieldii英語Acidovorax delafieldii, P. facilis英語Acidovorax facilis, P. flava英語Hydrogenophaga flava, P. gladioli英語Burkholderia gladioli, P. glathei英語Burkholderia glathei, P. glumae英語Burkholderia glumae, P. huttiensis英語Herbaspirillum huttiense, P. indigofera英語Vogesella indigofera, P. lanceolata英語Comamonadaceae, P. lemoignei英語Paucimonas lemoignei, P. mallei, P. mephitica英語Janthinobacterium lividum, P. mixta英語Telluria mixta, P. palleronii英語Hydrogenophaga palleronii, P. phenazinium英語Burkholderia phenazinium, P. pickettii英語Ralstonia pickettii, P. plantarii英語Burkholderia plantarii, P. pseudoflava英語Hydrogenophaga pseudoflava, P. pseudomallei, P. pyrrocinia英語Burkholderia pyrrocinia, P. rubrilineans英語Acidovorax avenae, P. rubrisubalbicans英語Herbaspirillum rubrisubalbicans, P. saccharophila英語Matsuebacter, P. solanacearum英語Ralstonia solanacearum, P. spinosa英語Hydrogenophaga, P. syzygii英語Ralstonia syzygii, P. taeniospiralis英語Hydrogenophaga taeniospiralis, P. terrigena英語Comamonas terrigena, P. testosteroni英語Comamonas testosteroni.

γ-β 變形菌: P. beteli英語Stenotrophomonas, P. boreopolis英語Xanthomonas, P. cissicola英語Xanthomonas, P. geniculata英語Stenotrophomonas, P. hibiscicola英語Stenotrophomonas, P. maltophilia英語Stenotrophomonas maltophilia, P. pictorum英語Stenotrophomonas.

γ 變形菌: P. beijerinckii英語Chromohalobacter, P. diminuta英語Brevundimonas diminuta, P. doudoroffii英語Aeromonas, P. elongata英語Microbulbifer elongatus, P. flectens英語Enterobacteriaceae, P. halodurans英語Halomonas halodurans, P. halophila英語Marinobacter, P. iners英語Marinobacterium georgiense, P. marina英語Halomonadaceae, P. nautica英語Marinobacter hydrocarbonoclasticus, P. nigrifaciens英語Pseudoalteromonas nigrifaciens, P. pavonacea英語Acinetobacter,[78]P. piscicida英語Pseudoalteromonas piscicida, P. stanieri英語Marinobacterium stanieri.

δ 變形菌: P. formicans英語Aeromonas caviae.

噬菌體

[編輯]

能夠侵染假單胞菌的噬菌體有很多,例如:

參考文獻

[編輯]
  1. ^ Madigan M; Martinko J (編). Brock Biology of Microorganisms 11th. Prentice Hall. 2005. ISBN 0-13-144329-1. 
  2. ^ Migula, W. (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1: 235–328.
  3. ^ Migula, W. (1900) System der Bakterien, Vol. 2. Jena, Germany: Gustav Fischer.
  4. ^ 4.0 4.1 4.2 Palleroni, N. J. The Pseudomonas Story. Environmental Microbiology. 2010, 12 (6): 1377–1383. PMID 20553550. doi:10.1111/j.1462-2920.2009.02041.x. 
  5. ^ 5.0 5.1 5.2 5.3 Cornelis P (編). Pseudomonas: Genomics and Molecular Biology 1st. Caister Academic Press. 2008 [2016-12-13]. ISBN 1-904455-19-0. (原始內容存檔於2016-09-12). 
  6. ^ 6.0 6.1 Anzai Y; Kim H; Park, JY; Wakabayashi H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol. 2000, 50 (4): 1563–89. PMID 10939664. doi:10.1099/00207713-50-4-1563. 
  7. ^ Anzai, Y; Kudo, Y; Oyaizu, H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol. 1997, 47 (2): 249–251. PMID 9103607. doi:10.1099/00207713-47-2-249. 
  8. ^ Yabuuchi, E.; Kosako, Y.; Oyaizu, H.; Yano, I.; Hotta, H.; Hashimoto, Y.; Ezaki, T.; Arakawa, M. Proposal of Burkholderia gen. Nov. And transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiology and immunology. 1992, 36 (12): 1251–1275. PMID 1283774. doi:10.1111/j.1348-0421.1992.tb02129.x. 
  9. ^ Yabuuchi, E.; Kosako, Y.; Yano, I.; Hotta, H.; Nishiuchi, Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. And Ralstonia eutropha (Davis 1969) comb. Nov. Microbiology and immunology. 1995, 39 (11): 897–904. PMID 8657018. doi:10.1111/j.1348-0421.1995.tb03275.x. 
  10. ^ Sawada H, Fujikawa T, Satou M. Pseudomonas aegrilactucae sp. nov. and Pseudomonas morbosilactucae sp. nov., pathogens causing bacterial rot of lettuce in Japan. Int J Syst Evol Microbiol 2022; 72:5599.
  11. ^ Kim HS, Suh MK, Kim JS, Do HE, Eom MK, Jin JS, Lee JS. Pseudomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2023; 73:6190.
  12. ^ 12.0 12.1 12.2 Testerman T, Varga J, Schiffer MM, Donohue H, Vieira Da Silva C, Graf J. Pseudomonas aphyarum sp. nov., Pseudomonas fontis sp. nov., Pseudomonas idahonensis sp. nov. and Pseudomonas rubra sp. nov., isolated from in, and around, a rainbow trout farm. Int J Syst Evol Microbiol 2023; 73:6201.
  13. ^ Banerjee S, Bedics A, Toth E, Kriszt B, Soares AR, Boka K, Tancsics A. Isolation of Pseudomonas aromaticivorans sp. nov from a hydrocarbon-contaminated groundwater capable of degrading benzene-, toluene-, m- and p-xylene under microaerobic conditions. Front Microbiol 2022; 13:929128.
  14. ^ Morimoto Y, Uwabe K, Tohya M, Hiramatsu K, Kirikae T, Baba T. Pseudomonas atagosis sp. nov., and Pseudomonas akappagea sp. nov., New Soil Bacteria Isolated from Samples on the Volcanic Island Izu Oshima, Tokyo. Curr Microbiol 2020; 77:1909-1915.
  15. ^ Zhang, D. C., Liu, H. C., Zhou, Y. G., Schinner, F., Margesin, R. (2011). Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61 (Pt10): 2333-2337
  16. ^ Dong X, Rao Z, Wu S, Peng F, Xie Z, Long Y. Pseudomonas benzopyrenica sp. nov., isolated from soil, exhibiting high-efficiency degradation of benzo(a)pyrene. Int J Syst Evol Microbiol 2023; 73:6034.
  17. ^ Mohapatra B, Phale PS. Taxonomic, metabolic traits and species description of aromatic compound degrading Indian soil bacterium Pseudomonas bharatica CSV86T. Journal of Environmental Science and Health, Part A 2023; 58:633-646.
  18. ^ Nicklasson M, Martin-Rodriguez AJ, Thorell K, Higdon SM, Neves L, Mussagy A, Rydberg HA, Hernroth B, Svensson-Stadler L, Sjoling A. Pseudomonas boanensis sp. nov., a bacterium isolated from river water used for household purposes in Boane District, Mozambique. Int J Syst Evol Microbiol 2022; 72:5461.
  19. ^ 19.0 19.1 Carvalho R, Albu S, Timilsina S, Minsavage GV, Paret ML, Jones JB. Pseudomonas californiensis sp. nov. and Pseudomonas quasicaspiana sp. nov., isolated from ornamental crops in California. Int J Syst Evol Microbiol 2022; 72:5565.
  20. ^ Gao H, Feng GD, Feng Z, Yao Q, Li J, Deng X, Li X, Zhu H. Pseudomonas citri sp. nov., a potential novel plant growth promoting bacterium isolated from rhizosphere soil of citrus. Antonie Van Leeuwenhoek 2023; 116:281-289.
  21. ^ Liao K, Liu J, Gu YL, Wang C, Wei HL. Pseudomonas cucumis sp. nov., isolated from the rhizosphere of crop plants. Int J Syst Evol Microbiol 2023; 73:6208.
  22. ^ Mulet M, Martínez MJ, Gomila M, Dabernig-Heinz J, Wagner GE, et al. Genome-based species diversity assessment in the Pseudomonas chlororaphis phylogenetic subgroup and proposal of Pseudomonas danubii sp. nov. isolated from freshwaters, soil, and rhizosphere. Diversity 2023; 15:617.
  23. ^ Atanasov KE, Galbis DM, Cornado D, Serpico A, Sanchez G, Bosch M, Ferrer A, Altabella T. Pseudomonas fitomaticsae sp. nov., isolated at Marimurtra Botanical Garden in Blanes, Catalonia, Spain. Int J Syst Evol Microbiol 2022; 72:5557.
  24. ^ Behrendt U, Ulrich A, Schumann P, Erler W, Burghardt J, Seyfarth W. A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 1999; 49:297-308.
  25. ^ Kosina M, Svec P, Cernohlavkova J, Bartak M, Snopkova K, De Vos P, Sedlacek I. Description of Pseudomonas gregormendelii sp. nov., a Novel Psychrotrophic Bacterium from James Ross Island, Antarctica. Curr Microbiol 2016; 73:84-90.
  26. ^ 26.0 26.1 Kim CM, Jeong JW, Lee DH, Kim SB. Pseudomonas guryensis sp. nov. and Pseudomonas ullengensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2021; 71:5082.
  27. ^ Liao K, Li Q, Li JZ, Wei HL. Pseudomonas hefeiensis sp. nov., isolated from the rhizosphere of multiple cash crops in China. Int J Syst Evol Microbiol 2024; 74:6303.
  28. ^ Sorty AM, Zervas A, Garcia de Salamone IE, Nelson LM, Stougaard P. Pseudomonas hormoni sp. nov., a plant hormone producing bacterium isolated from Arctic grass, Ellesmere Island, Canada. Int J Syst Evol Microbiol 2023; 73:6119.
  29. ^ Turner TL, Mitra SD, Kochan TJ, Pincus NB, Lebrun-Corbin M, Cheung BH, Gatesy SW, Afzal T, Nozick SH, Ozer EA, et al. Taxonomic characterization of Pseudomonas hygromyciniae sp. nov., a novel species discovered from a commercially purchased antibiotic. Microbiol Spectr 2023; 11:e0183821.
  30. ^ 30.0 30.1 Lick S, Wibberg D, Busche T, Blom J, Grimmler C, Goesmann A, Kalinowski J. Pseudomonas kulmbachensis sp. nov. and Pseudomonas paraveronii sp. nov., originating from chilled beef and chicken breast. Int J Syst Evol Microbiol 2024; 74:6293.
  31. ^ Thorat V, Kirdat K, Tiwarekar B, DaCosta E, Debbarma P, Shouche Y, Sathe S, Goel R, Lodha T, Yadav A. Pseudomonas lalkuanensis sp. nov., isolated from a bacterial consortia of contaminated soil enriched for the remediation of e-waste. Int J Syst Evol Microbiol 2020; 70:6468-6475.
  32. ^ Lu CH, Han TH, Jiang N, Gai XT, Cao ZH, Zou SY, Chen W, Ma JH, Lin ZL, Li J, et al. Pseudomonas lijiangensis sp. nov., a novel phytopathogenic bacterium isolated from black spots of tobacco. Int J Syst Evol Microbiol 2022; 72:5591.
  33. ^ Yang Y, Gao Y, Liu Y, Liu B, Wang D, Xu Y, Wei Y. Pseudomonas marianensis sp. nov., a marine bacterium isolated from deep-sea sediments of the Mariana Trench. Arch Microbiol 2022; 204:638.
  34. ^ Mulet, M.; Gomila, M.; Busquets, A.; Sánchez, D.; Lalucat, J.; García-Valdés, E. Genome-Based Taxonomy of Species in the Pseudomonas syringae and Pseudomonas lutea Phylogenetic Groups and Proposal of Pseudomonas maioricensis sp. nov., Isolated from Agricultural Soil. Microorganisms 2024, 12, 460. https://doi.org/10.3390/microorganisms12030460
  35. ^ Sawada H, Fujikawa T, Satou M. Pseudomonas aegrilactucae sp. nov. and Pseudomonas morbosilactucae sp. nov., pathogens causing bacterial rot of lettuce in Japan. Int J Syst Evol Microbiol 2022; 72:5599.
  36. ^ Li M, Ma Q, Kong D, Han X, Che J, Zhou Y, Jiang X, Ruan Z, Zhang Q. Pseudomonas nicosulfuronedens sp. nov., a nicosulfuron degrading bacterium, isolated from a microbial consortium. Int J Syst Evol Microbiol 2021; 71:4632.
  37. ^ Ntana F, Hennessy RC, Zervas A, Stougaard P. Pseudomonas nunensis sp. nov. isolated from a suppressive potato field in Greenland. Int J Syst Evol Microbiol 2023; 73:5700.
  38. ^ Zhang M, Li A, Yao Q, Xiao B, Zhu H. Pseudomonas oligotrophica sp. nov., a Novel Denitrifying Bacterium Possessing Nitrogen Removal Capability Under Low Carbon-Nitrogen Ratio Condition. Front Microbiol 2022; 13:882890.
  39. ^ Huq MA, Lee SY, Ma J, Rahman MM, Rahman MS, Park JH, Akter S. Pseudomonas oryzagri sp. nov., isolated from a rice field soil. Int J Syst Evol Microbiol 2022; 72:5534.
  40. ^ Rudra B, Duncan L, Shah AJ, Shah HN, Gupta RS. Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov. Int J Syst Evol Microbiol 2022; 72:5542.
  41. ^ Ono E, Tohya M, Watanabe S, Tada T, Kuwahara-Arai K, Oshiba A, Izumi N, Kirikae T. Pseudomonas paralcaligenes sp. nov., isolated from a hospitalized patient. Int J Syst Evol Microbiol 2023; 73:5649.
  42. ^ Diaz M, Bach T, Gonzalez Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008T. Front Plant Sci 2022; 13:894985.
  43. ^ Novakova D, Koublova V, Sedlar K, Stankova E, Kralova S, Svec P, Neumann-Schaal M, Wolf J, Koudelkova S, Bartak M, et al. Pseudomonas petrae sp. nov. isolated from regolith samples in Antarctica. Syst Appl Microbiol 2023; 46:126424.
  44. ^ Tambong JT, Xu R, Chi SI, Birugu I, Bachelet S, Hutter C, Duceppe MO, Briere S. Pseudomonas quebecensis sp. nov., a bacterium isolated from root-zone soil of a native legume, Amphicarpaea bracteata (L.) Fernald, in Quebec, Canada. Int J Syst Evol Microbiol 2023; 73:5890.
  45. ^ Testerman T, Varga J, Schiffer MM, Donohue H, Vieira Da Silva C, Graf J. Pseudomonas aphyarum sp. nov., Pseudomonas fontis sp. nov., Pseudomonas idahonensis sp. nov. and Pseudomonas rubra sp. nov., isolated from in, and around, a rainbow trout farm. Int J Syst Evol Microbiol 2023; 73:6201.
  46. ^ Shelomi M, Chen WM, Chen HK, Lee HY, Young CC, Lin SY, Liaw SJ. Pseudomonas schmalbachii sp. nov., isolated from the gut of a millipede (Trigoniulus corallinus) from a coconut tree. Int J Syst Evol Microbiol 2021; 71:5101.
  47. ^ 47.0 47.1 Todorovic I, Abrouk D, Kyselkova M, Lavire C, Rey M, Raicevic V, Jovicic-Petrovic J, Moenne-Loccoz Y, Muller D. Two novel species isolated from wheat rhizospheres in Serbia: Pseudomonas serbica sp. nov. and Pseudomonas serboccidentalis sp. nov. Syst Appl Microbiol 2023; 46:126425.
  48. ^ Tian, L.; Zhang, Y.; Yang, H.; Zhao, Q.; Qiu, H.; Xu, J.; Qin, C. Taxonomic Description and Complete Genome Sequencing of Pseudomonas silvicola sp. nov. Isolated from Cunninghamia laceolata. Forests 2023, 14, 1089. https://doi.org/10.3390/f14061089
  49. ^ Sawada H, Takeuchi K, Someya N, Morohoshi T, Satou M. Pseudomonas solani sp. nov. isolated from the rhizosphere of eggplant in Japan. Int J Syst Evol Microbiol 2023; 73:5942.
  50. ^ Krieg, Noel. Bergey's Manual of Systematic Bacteriology, Volume 1. Baltimore: Williams & Wilkins. 1984. ISBN 0-683-04108-8. 
  51. ^ Meyer JM; Geoffroy VA; Baida N; Gardan, L.; et al. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl. Environ. Microbiol. 2002, 68 (6): 2745–2753. PMC 123936可免費查閱. PMID 12039729. doi:10.1128/AEM.68.6.2745-2753.2002. 
  52. ^ Lau GW; Hassett DJ; Ran H; Kong F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends in molecular medicine. 2004, 10 (12): 599–606. PMID 15567330. doi:10.1016/j.molmed.2004.10.002. 
  53. ^ Matthijs S; Tehrani KA; Laus G; Jackson RW; et al. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ. Microbiol. 2007, 9 (2): 425–434. PMID 17222140. doi:10.1111/j.1462-2920.2006.01154.x. 
  54. ^ Biello, David (February 28, 2008) Do Microbes Make Snow?頁面存檔備份,存於網際網路檔案館Scientific American
  55. ^ Hassett D; Cuppoletti J; Trapnell B; Lymar S; et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev. 2002, 54 (11): 1425–1443. PMID 12458153. doi:10.1016/S0169-409X(02)00152-7. 
  56. ^ 56.0 56.1 Ryan KJ; Ray CG (編). Sherris Medical Microbiology 4th. McGraw Hill. 2004. ISBN 0-8385-8529-9. 
  57. ^ Van Eldere J. Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections. J. Antimicrob. Chemother. February 2003, 51 (2): 347–352 [2016-12-13]. PMID 12562701. doi:10.1093/jac/dkg102. (原始內容存檔於2009-02-10). 
  58. ^ Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. January 2004, 10 (1): 12–26 [2016-12-13]. PMID 14706082. doi:10.1111/j.1469-0691.2004.00763.x. (原始內容存檔於2013-01-05). 
  59. ^ "A Trojan-horse strategy selected to fight bacteria". INFOniac.com. 2007-03-16. Retrieved 2008-11-20.
  60. ^ Smith, Michael (2007-03-16). "Gallium May Have Antibiotic-Like Properties". MedPage Today. Retrieved 2008-11-20.
  61. ^ Hardie. The Secreted Proteins of Pseudomonas aeruginosa: Their Export Machineries, and How They Contribute to Pathogenesis. Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press. 2009. ISBN 978-1-904455-42-4. 
  62. ^ Brodey CL; Rainey PB; Tester M; Johnstone K. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Molecular Plant–Microbe Interaction. 1991, 1 (4): 407–11. doi:10.1094/MPMI-4-407. 
  63. ^ Young JM. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. NZ J Agric Res. 1970, 13 (4): 977–90. doi:10.1080/00288233.1970.10430530. 
  64. ^ Haas D; Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology. 2005, 3 (4): 307–319. PMID 15759041. doi:10.1038/nrmicro1129. 
  65. ^ Chin-A-Woeng TF; Bloemberg, Guido V.; Mulders, Ine H. M.; Dekkers, Linda C.; et al. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact. 2000, 13 (12): 1340–1345. PMID 11106026. doi:10.1094/MPMI.2000.13.12.1340. 
  66. ^ Esipov; Adanin, VM; Baskunov, BP; Kiprianova, EA; et al. New antibiotically active fluoroglucide from Pseudomonas aurantiaca. Antibiotiki. 1975, 20 (12): 1077–81. PMID 1225181. 
  67. ^ O'Mahony MM; Dobson AD; Barnes JD; Singleton I. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere. 2006, 63 (2): 307–314. PMID 16153687. doi:10.1016/j.chemosphere.2005.07.018. 
  68. ^ Yen KM; Karl MR; Blatt LM; Simon, MJ; et al. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 1991, 173 (17): 5315–27. PMC 208241可免費查閱. PMID 1885512. 
  69. ^ Huertas MJ; Luque-Almagro VM; Martínez-Luque M; Blasco, R.; et al. Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem. Soc. Trans. 2006, 34 (Pt 1): 152–5. PMID 16417508. doi:10.1042/BST0340152. 
  70. ^ Nojiri H; Maeda K; Sekiguchi H; Urata, Masaaki; et al. Organization and transcriptional characterization of catechol degradation genes involved in carbazole degradation by Pseudomonas resinovorans strain CA10. Biosci. Biotechnol. Biochem. 2002, 66 (4): 897–901. PMID 12036072. doi:10.1271/bbb.66.897. 
  71. ^ Nam; Chang, YS; Hong, HB; Lee, YE. A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol. Applied Microbiology and Biotechnology. 2003, 62 (2–3): 284–290. PMID 12883877. doi:10.1007/s00253-003-1255-1. 
  72. ^ Onaca; Kieninger, M; Engesser, KH; Altenbuchner, J. Degradation of alkyl methyl ketones by Pseudomonas veronii. Journal of Bacteriology. May 2007, 189 (10): 3759–3767. PMC 1913341可免費查閱. PMID 17351032. doi:10.1128/JB.01279-06. 
  73. ^ Marqués S; Ramos JL. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol. Microbiol. 1993, 9 (5): 923–929. PMID 7934920. doi:10.1111/j.1365-2958.1993.tb01222.x. 
  74. ^ Sepulveda-Torres; Rajendran, N; Dybas, MJ; Criddle, CS. Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch Microbiol. 1999, 171 (6): 424–429. PMID 10369898. doi:10.1007/s002030050729. 
  75. ^ Pereira, JN & Morgan, ME. Nutrition and physiology of Pseudomonas fragi. J Bacteriol. Dec 1957, 74 (6): 710–3. PMC 289995可免費查閱. PMID 13502296. 
  76. ^ Levine, M & Anderson, DQ. Two New Species of Bacteria Causing Mustiness in Eggs. J Bacteriol. Apr 1932, 23 (4): 337–47. PMC 533329可免費查閱. PMID 16559557. 
  77. ^ Gennari, M & Dragotto, F. A study of the incidence of different fluorescent Pseudomonas species and biovars in the microflora of fresh and spoiled meat and fish, raw milk, cheese, soil and water. J Appl Bacteriol. Apr 1992, 72 (4): 281–8. PMID 1517169. doi:10.1111/j.1365-2672.1992.tb01836.x. 
  78. ^ Van Landschoot, A.; Rossau, R.; De Ley, J. Intra- and Intergeneric Similarities of the Ribosomal Ribonucleic Acid Cistrons of Acinetobacter. International Journal of Systematic Bacteriology. 1986, 36 (2): 150. doi:10.1099/00207713-36-2-150. 
  79. ^ 79.0 79.1 Hertveldt, K.; Lavigne, R.; Pleteneva, E.; Sernova, N.; Kurochkina, L.; Korchevskii, R.; Robben, J.; Mesyanzhinov, V.; Krylov, V. N.; Volckaert, G. Genome Comparison of Pseudomonas aeruginosa Large Phages (PDF). Journal of Molecular Biology. 2005, 354 (3): 536–545 [2016-12-13]. PMID 16256135. doi:10.1016/j.jmb.2005.08.075. (原始內容 (PDF)存檔於2016-03-04). 
  80. ^ Lavigne, R.; Noben, J. P.; Hertveldt, K.; Ceyssens, P. J.; Briers, Y.; Dumont, D.; Roucourt, B.; Krylov, V. N.; Mesyanzhinov, V. V.; Robben, J.; Volckaert, G. The structural proteome of Pseudomonas aeruginosa bacteriophage KMV. Microbiology. 2006, 152 (2): 529–534. PMID 16436440. doi:10.1099/mic.0.28431-0. 
  81. ^ 81.0 81.1 Ceyssens, P. -J.; Lavigne, R.; Mattheus, W.; Chibeu, A.; Hertveldt, K.; Mast, J.; Robben, J.; Volckaert, G. Genomic Analysis of Pseudomonas aeruginosa Phages LKD16 and LKA1: Establishment of the KMV Subgroup within the T7 Supergroup. Journal of Bacteriology. 2006, 188 (19): 6924–6931. PMC 1595506可免費查閱. PMID 16980495. doi:10.1128/JB.00831-06. 

外部連結

[編輯]

其他

[編輯]