跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

華北克拉通西部地塊

維基百科,自由的百科全書
圖1. 中國境內構造組分簡圖。華北克拉通西部地塊的位置標紅。改自趙國春,2001。[1]

華北克拉通西部地塊是一個古微板塊,主要由新太古代古元古代基岩構成,部分地區被寒武紀新生代噴出岩沉積岩覆蓋。[2]它是華北克拉通兩個子陸塊之一。西部地塊的便捷在不同模型中略有不同,但其形狀和面積是相似的。廣泛的共識是,西部陸塊覆蓋了中國中東部大部分地區。[1][3][4][5][6][7]

西部地塊存在火成岩、沉積岩和變質岩。最古老的地質記錄是內蒙古西烏蘭布朗發現的27億年前形成的深成火成岩[8]最年輕的岩石是見於河北三義堂的造山帶噴出火成岩,形成於2300萬年前。[9]沉積岩主要分布在西部區塊南部的鄂爾多斯盆地。[10]變質岩的出露大多在地塊北部。

西部地塊的構造環境和演變存在爭議。有各種模型假設該區塊的分區和構造史,它們通常相互矛盾。然而,大多數模型都同意存在一個古元古代造山帶,東西方向橫穿西部地塊,儘管有不同的名稱。[10]

由於西部地塊的地質事件始於前寒武紀,當時超過80%的現有大陸地殼體積已經形成了,[11][12][13]所以可以通過西部地塊的地質記錄,研究複雜的地質演變和早期構造史。[14][15]

岩石

[編輯]

前寒武紀基岩(46–5.39億年前)

[編輯]

太古宙岩石(40–25億年前)

[編輯]

西部地塊最早的地質記錄形成於新太古代[8]當時發生了大量地殼增生和再造。[10]新太古代岩石主要由綠岩、高級變質岩和花崗岩類構成。[16]礦物檢查顯示了典型的逆時針溫度-壓力-時間路徑,表明新太古代的地殼生長存在侵入和底侵。[17]

固陽花崗綠岩地體
[編輯]
圖2. 華北克拉通西部陸塊的簡化地質圖,改自王偉等,2012 & 2016。[18][19]該圖顯示了不同時代岩石的分布。西部地塊北部暴露出太古宙和古元古代岩石,其餘地區則被顯生宙岩石覆蓋。GY-固陽花崗綠岩地體;WC-武川高級複合體。

固陽花崗綠岩地體位於西部地塊北部,從色爾騰山向東分布到東洪生。[10][20][21]這個地體以變質岩和花崗岩為主體。有人認為該岩系可能代表了上層地殼的古老變質作用。[22]

綠岩是前寒武紀變質的超基性岩鎂鐵質岩石和沉積岩序列。它們在固陽花崗綠岩地體的色爾騰山有完全的出露。[10][20]該岩層的綠岩序列可以劃為3個子單元。低層以變質的鎂鐵質和超基性噴出岩為主,夾有帶狀條狀鐵層[23]中層由一系列變質火成岩組成,成分從長英質到鎂鐵質不等。頂層主要是變質沉積岩,如石英岩大理石[16]鋯石測年數據,綠岩序列底層形成於約25.4億年前,[24]中層和頂層的年代晚於25.1億年前。[23]

花崗岩類是主要由石英長石雲母組成的侵入型火成岩。[25]固陽花崗綠岩帶的花崗岩類主要是TTG岩石讚岐岩類[16]TTG岩石的形成有兩個階段,第一階段大約在25.3億年前[26],第二階段在25.2-24.8億年前。[20][27]讚岐岩類形成於TTG岩石形成的兩個階段之間,大約在25.3-25.2億年前。[20][27]

武川高級複合體
[編輯]

武川高級複合體西起朱拉溝,東至西烏蘭布朗。[10]複合體中包括花崗岩類、麻粒岩紫蘇花崗岩。花崗岩類主要是中(550-650°C)到高級(650-900°C)變質的閃長岩[28],麻粒岩是高級變質的TTG岩石。[10]與固陽花崗綠岩地體相似,武川複合體的岩石的年代也在距今25.5-25億年前左右。[20][29]高級複合體可能是25.5-25億年前變質的下層地殼。[22]

古元古代岩石(25–5.39億年前)

[編輯]

許多研究者提出,華北克拉通西部陸塊是在古元古代(25-16億年前)集合起來的,形成了一個由孔茲岩組成的貫穿西部陸塊的線性結構。[3][1][4][5][7]孔茲岩帶自賀蘭山向東延伸至集寧複合體。[4] Pelitic 麻粒岩、石英岩、長英質副片麻岩和大理石都屬於所謂「孔茲岩系」,沿此帶均有分布。[10]孔茲岩系是在穩定的大陸坡環境下產生的沉積岩經過變質作用形成的。[4][30][31]通過鋯石測年,可知沉積岩原岩是在23-20億年前沉積的,在19.5-18.7億年前發生變質作用。[8]孔茲岩中的礦物表現出等溫減壓的壓力-溫度路徑,說明沉積原岩可能是在碰撞環境中變質的。[32]

顯生宙地層(5.39億年前至今)

[編輯]

前寒武紀之後,西部地塊變得更加穩定。沉積岩沉寂下來,覆蓋了前寒武紀基岩的一部分。顯生宙也發生了岩漿作用[2]
寒武紀至奧陶紀早期,西部地塊形成了大量碳酸鹽岩[33]晚奧陶世到早石炭世幾乎沒有沉積物。[34]晚石炭世和早二疊世期間,碳酸鹽和一些含煤岩石又開始沉積。晚二疊世時,形成了礫岩及紅色含鐵砂岩粉砂岩泥岩紅層)。[35]三疊紀侏羅紀,地層以砂岩和泥岩為主。[36][37]砂岩沉積和岩漿作用發生於早白堊世,形成噴出火成岩,如流紋岩安山岩玄武岩英安岩[38]晚白堊世至新生代的沉積物和新生代玄武岩覆蓋在之前的地層上。[39]

華北克拉通西部地塊岩石狀況簡表
地質階段 岩石形成時間 岩石 位置
新太古代 2.7 Ga TTG[8] 西烏蘭布朗[8]
2.55–2.50 Ga 綠片岩、角閃岩、條狀鐵帶、普通角閃石-斜長石片麻岩、副片麻岩、雲母片岩、石英岩、大理石、TTG岩石、石英閃長岩埃達克岩、讚岐岩類、麻粒岩和紫蘇花崗岩[10][16][23][25][28] 固陽花崗綠岩地體和武川高級複合體[10]
古元古代 1.95–1.87 Ga 泥質麻粒岩、石英岩、長英質副片麻岩和大理石[10] 孔茲岩帶[10]
寒武紀 539–488 Ma 碳酸鹽岩[33] 主要在鄂爾多斯盆地[2]
奧陶紀 488–460 Ma
460–443 Ma 幾乎沒有[34] /
志留紀 443–416 Ma
泥盆紀 416–359 Ma
石炭紀 359–318 Ma
318–299 Ma 碳酸鹽岩和含煤岩層[33] 主要位於鄂爾多斯盆地[2]
二疊紀 299–270 Ma
270–251 Ma 紅床和礫岩[35]
三疊紀 251–228 Ma 含沙泥岩、中-高品位砂岩與灰泥岩層[36]
228–199 Ma 高品位砂岩和泥岩,夾煤炭層[36]
侏羅紀 199–145 Ma 中-高品位砂岩、粉砂岩、礫岩、泥板岩和煤炭[37]
白堊紀 145–65 Ma 玄武岩、安山岩、英安岩、流紋岩和化石化沉積岩[38]
新生代 65至今 沉積物與玄武岩[2]

構造劃分

[編輯]

西部地塊的構造劃分仍有激烈爭議。有幾個模型說明了西部地塊的構造劃分,它們給西部地塊的組成部分和結構賦予了不同名稱。這些模型中的西部地塊的面積和形狀相似,但它們間可能並不完全一致。

趙國春等人[1][3][4]提出,華北克拉通西部地塊可以細分為兩個子地塊:陰山地塊和鄂爾多斯地塊。它們間是一個古元古代陸陸碰撞帶,是孔茲岩帶。孔茲岩帶沿東東北-西西南方向橫切整個地塊。

圖3a. 趙國春模型下,華北克拉通西部地塊的構造劃分。[1][3][4]

Kusky等人[5][40]則將西部地塊分為3個部分:內蒙古-河北北部造山帶、恆山高原和一個微陸塊。恆山高原南界是一個正斷層,方向為東東北-西西南。東北-西南走向的大同-吳起斷層橫貫西部地塊。

圖 3b. Kusky模型下,華北克拉通西部地塊的構造劃分。[5][40]三角形表示恆山高原向北移動,向內蒙古-河北北部造山帶移動。虛線表示斷層。

Santosh[41]的想法與趙國春等相似,他將西部地塊分成陰山地塊和鄂爾多斯地塊,但中間的碰撞帶則稱作「內蒙古縫合帶」。不連續的孔茲岩帶暴露在內蒙古縫合帶的南部。

圖3c. Santosh模型下,華北克拉通西部地塊的構造劃分。[7]三角形表示陰山地塊向南移動。

構造演化

[編輯]

前寒武紀歷史

[編輯]

不同地質學家提出了各種西部地塊的演化模式。下面討論三種最流行的解釋前寒武紀基岩構造演化的模型。

趙國春模型

[編輯]

趙國春模型[1][3][4]可以分為兩個主要階段:新太古代地殼增生和古元古代兩個地塊的融合。趙國春等人提出,27億年前,年輕的陰山地塊發生過一次大型地殼增生,形成厚厚的鎂鐵質地殼,儘管還不能確定這一岩漿事件是發生在大陸還是海洋環境中。25.5-25億年前,年輕的陰山地塊被部分熔化,產生大量TTG岩石,覆蓋了整個陰山地塊。約24.5億年前,鄂爾多斯地塊潛沒到陰山地塊下。俯衝板塊的部分熔化形成了花崗岩和噴出岩,如埃達克岩和讚岐岩類。20-19.5億年前,鄂爾多斯地塊北部的沉積岩沉積在穩定的大陸被動邊緣。西部地塊的最終形成發生於約19.5億年前。陰山地塊南部和鄂爾多斯地塊北部相撞時,古海洋關閉。陸陸碰撞的高溫高壓環境產生了兩個地塊間的孔茲岩帶,使得西部地塊其他部分發生變質作用。[1][3][4]

圖4. 趙國春等人提出的24.5-19.5億年前的構造演化圖。[4] (1) 24.5億年前,鄂爾多斯地塊的洋殼潛沒到陰山地塊下,形成噴出岩。 (2) 沉積岩在20-19.5億年前沉積在鄂爾多斯地塊。 (3) 兩個地塊在19.5億年前相遇,之間形成孔茲岩帶。

Kusky模型

[編輯]

Kusky模型中,[5][40]古陸塊在35-27億年前形成了年輕的西部陸塊。23億年前,五台弧和一個外來弧分別潛沒到西部地塊的東西兩側。23-20億年前,西部地塊與這兩個弧相撞,東南部形成了恆山花崗岩帶,西北部則形成內蒙古-河北北部造山帶和孔茲岩帶。最終,哥倫比亞超大陸在18億年前的華北克拉通北緣與之發生碰撞。

圖5. Kusky等人提出的西部陸塊構造演化圖。[5][40] (1) 23億年前之前,東部的五台弧和西部的外來弧潛沒到年輕的西部陸塊下。 (2) 外來弧與西部地塊相撞,形成內蒙古-河北北部造山帶。 (3) 哥倫比亞超大陸與西部地塊相撞。IMNHO-內蒙古-河北北部造山帶。

Santosh模型

[編輯]

不同於趙國春模型和Kusky模型,Santosh[7]提出的西部地塊構造演化主要集中在西部地塊的融合,對碰撞事件發生前的早期構造發展討論較少。Santosh認為,鄂爾多斯地塊是一個由TTG岩石和紫蘇花崗岩組成的大陸弧。在鋯石定年和斷層掃描數據的支持下,Santosh提出陰山地塊和鄂爾多斯地塊在大約19.2億年前發生碰撞,陰山地塊潛沒到鄂爾多斯地塊下。兩個子地塊碰撞後形成了增生楔。玄武岩質洋殼有一部分被納入增生楔。Santosh將增生楔區域命名為內蒙古縫合帶。[7]孔茲岩帶也形成於縫合帶中。[7]

圖6. Santosh提出的西部陸塊構造演化圖。[7]陰山地塊於19.2億年前潛沒到鄂爾多斯地塊下,形成內蒙古縫合帶,兩者間有些玄武岩質洋殼。

顯生宙歷史

[編輯]

西部地塊在前寒武紀融合後變得穩定。沉積和火山活動開始覆蓋前寒武紀基底。除晚奧陶世至早石炭世的記錄空白外,從寒武紀到侏羅紀,各種類型的沉積岩形成了厚厚的地層。[2]

在早白堊世,由於克拉通破壞,西部地塊的東部出現了廣泛的岩漿活動。當時,華北克拉通的很大一部分被削除,變得不穩定。克拉通破壞主要受太平洋板塊潛沒至亞洲板塊下引發,隨後發生地殼增厚,於是地殼下部無法承受重力,崩解進地幔。[42]這些過程導致了華北克拉通地區的地殼變薄、變形和岩漿活動。雖然大部分岩漿活動發生在東部地塊,但也波及到西部地塊的東部,產生了玄武岩、安山岩、英安岩和流紋岩。在新生代,由於地殼薄,也發生了火山活動並產生玄武岩。[2]

另見

[編輯]

參考

[編輯]
  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 趙國春; Wilde, Simon A.; Cawood, Peter A.; 孫敏. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research. 2001-03-01, 107 (1–2): 45–73. Bibcode:2001PreR..107...45Z. ISSN 0301-9268. doi:10.1016/s0301-9268(00)00154-6. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Zhu, Ri-Xiang; Yang, Jin-Hui; Wu, Fu-Yuan. Timing of destruction of the North China Craton. Lithos. 2012-05-25, 149: 51–60. Bibcode:2012Litho.149...51Z. ISSN 0024-4937. doi:10.1016/j.lithos.2012.05.013. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 趙國春; Wilde, S. A.; Cawood, P. A.; Lu, Liangzhao. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review. 1998-08-01, 40 (8): 706–721. Bibcode:1998IGRv...40..706Z. ISSN 0020-6814. S2CID 129322912. doi:10.1080/00206819809465233. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 趙國春; 孫敏; Wilde, Simon A.; 李三忠. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research. 2005-01-01, 136 (2): 177–202. Bibcode:2005PreR..136..177Z. ISSN 0301-9268. doi:10.1016/j.precamres.2004.10.002. 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 Kusky, Timothy M.; Li, Jianghai. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences. 2003-12-01, 22 (4): 383–397. Bibcode:2003JAESc..22..383K. doi:10.1016/S1367-9120(03)00071-3 (英語). 
  6. ^ Faure, Michel; Trap, Pierre; Lin, Wei; Monié, Patrick; Bruguier, Olivier. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt —New insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs (PDF). Episodes. 2007-06-01, 30 (2): 96–107 [2022-12-24]. ISSN 0705-3797. doi:10.18814/epiiugs/2007/v30i2/004可免費查閱. (原始內容存檔 (PDF)於2023-01-17). 
  7. ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research. 2010-04-01, 178 (1–4): 149–167. Bibcode:2010PreR..178..149S. ISSN 0301-9268. doi:10.1016/j.precamres.2010.02.003. 
  8. ^ 8.0 8.1 8.2 8.3 8.4 Dong, X.J.; Xu, Z.Y.; Liu, Z.H.; Sha, Q. (2012). Discovery of 2.7 Ga granitic gneiss in the northern Daqingshan area, Inner Mongolia and its geological significance. Earth Sci. J. China Univ. Geosci. 37: 20–27.   
  9. ^ Zhao, Xin-Miao; Zhang, Hong-Fu; Su, Fei; Hu, Zhao-Chu; Lo, Ching-Hua; Wang, Ying; Yang, Sai-Hong; Guo, Jing-Hui. Phlogopite40Ar/39Ar geochronology of mantle xenoliths from the North China Craton: Constraints on the eruption ages of Cenozoic basalts. Gondwana Research. 2012-03-04, 23 (1): 208–219. Bibcode:2013GondR..23..208Z. doi:10.1016/j.gr.2012.02.015 (英語). 
  10. ^ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Zhao, Guochun (Geologist), author. Precambrian evolution of the North China craton. 2013-12-06. ISBN 9780124072275. OCLC 877725160. 
  11. ^ Armstrong, R. L.; Harmon, R. S. Radiogenic Isotopes: The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth [and Discussion]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1981-05-15, 301 (1461): 443–472. ISSN 1364-503X. S2CID 122643506. doi:10.1098/rsta.1981.0122. 
  12. ^ Dewey, John Frederick; Windley, B. F.; Moorbath, Stephen Erwin; Windley, B. F. Growth and differentiation of the continental crust. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1981-05-15, 301 (1461): 189–206. Bibcode:1981RSPTA.301..189D. S2CID 121926708. doi:10.1098/rsta.1981.0105. 
  13. ^ Condie, Kent C. Episodic continental growth models: afterthoughts and extensions. Tectonophysics. 2000-07-01, 322 (1–2): 153–162. Bibcode:2000Tectp.322..153C. ISSN 0040-1951. doi:10.1016/s0040-1951(00)00061-5. 
  14. ^ 翟明國; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research. 2011-02-18, 20 (1): 6–25. Bibcode:2011GondR..20....6Z. ISSN 1342-937X. doi:10.1016/j.gr.2011.02.005. 
  15. ^ 翟明國; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research. 2013-03-06, 24 (1): 275–297. Bibcode:2013GondR..24..275Z. ISSN 1342-937X. doi:10.1016/j.gr.2013.02.007. 
  16. ^ 16.0 16.1 16.2 16.3 Ma, Xudong; Fan, Hong-Rui; Santosh, M.; Guo, Jinghui. Petrology and geochemistry of the Guyang hornblendite complex in the Yinshan block, North China Craton: Implications for the melting of subduction-modified mantle. Precambrian Research. 2015-12-13, 273: 38–52. Bibcode:2016PreR..273...38M. ISSN 0301-9268. doi:10.1016/j.precamres.2015.12.001. 
  17. ^ Jin, W., Li, S.X., Liu, X.S. (1991). "The Metamorphic dynamics of Early Precambrian high-grade metamorphic rocks series in Daqing-Ulashan area, Inner Mongolia." Acta Petrol. Sin. 7: 27-35.
  18. ^ Wang, Wei; Liu, Shuwen; Wilde, Simon A.; Li, Qiugen; Zhang, Jian; Bai, Xiang; Yang, Pengtao; Guo, Rongrong. Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: Constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton. Precambrian Research. 2011-11-09,. 222-223: 290–311. Bibcode:2012PreR..222..290W. ISSN 0301-9268. doi:10.1016/j.precamres.2011.10.023. 
  19. ^ Wang, Changming; Bagas, Leon; Lu, Yongjun; Santosh, M.; Du, Bin; McCuaig, T. Campbell. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Science Reviews. 2016-03-08, 156: 39–65. Bibcode:2016ESRv..156...39W. ISSN 0012-8252. doi:10.1016/j.earscirev.2016.02.008. 
  20. ^ 20.0 20.1 20.2 20.3 20.4 Jian, Ping; Kröner, Alfred; Windley, Brian F.; Zhang, Qi; Zhang, Wei; Zhang, Liqao. Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan Block. Precambrian Research. 2012-03-12,. 222-223: 230–254. Bibcode:2012PreR..222..230J. ISSN 0301-9268. doi:10.1016/j.precamres.2012.03.002. 
  21. ^ Liu, Li; Zhang, Lianchang; Dai, Yanpei. Formation age and genesis of the banded iron formations from the Guyang Greenstone Belt, Western North China Craton. Ore Geology Reviews. 2013-11-14, 63: 388–404. ISSN 0169-1368. doi:10.1016/j.oregeorev.2013.10.011. 
  22. ^ 22.0 22.1 Li, S.X., Sun, D.Y., Yu, H.F., Jin, W., Liu, X.S., Cao, L., 1995. Distribution of Ductile Shear Zones and Metallogenic Prediction of the Related Gold Deposits in the Early Precambrian Metamorphic Rocks, Middle-Western Inner Mongolia. Jilin Science and Technology Press, Changchun, pp. 1-111.
  23. ^ 23.0 23.1 23.2 Chen, L. (2007). Geochronology and geochemistry of the Guyang Greenstone Belt. Post-Doctorate Report. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing. pp. 1-40 (in Chinese with English abstract).
  24. ^ Ma, Xudong; Fan, Hong-Rui; Santosh, M.; Liu, Xuan; Guo, Jing-Hui. Origin of sanukitoid and hornblendite enclaves in the Dajitu pluton from the Yinshan Block, North China Craton: product of Neoarchaean ridge subduction?. International Geology Review. 2014-07-01, 56 (10): 1197–1212. Bibcode:2014IGRv...56.1197M. ISSN 0020-6814. S2CID 128668554. doi:10.1080/00206814.2014.929055. 
  25. ^ 25.0 25.1 Blatt, Harvey. Petrology : igneous, sedimentary, and metamorphic.. Tracy, Robert J., Ehlers, Ernest G. 2nd. New York: W.H. Freeman. 1996. ISBN 0716724383. OCLC 32890797. 
  26. ^ Ren, Y.W. (2010). The Study of Granite-Greenstone Belt in Xihongshan Area, Inner Mongolia. Doctor’s thesis: Jinlin University, pp. 1–69 (in Chinese with English abstract).
  27. ^ 27.0 27.1 Ma, Xudong; Fan, Hong-Rui; Santosh, M.; Guo, Jinghui. Geochemistry and zircon U–Pb chronology of charnockites in the Yinshan Block, North China Craton: tectonic evolution involving Neoarchaean ridge subduction. International Geology Review. 2013-05-14, 55 (13): 1688–1704. Bibcode:2013IGRv...55.1688M. ISSN 0020-6814. S2CID 129089419. doi:10.1080/00206814.2013.796076. 
  28. ^ 28.0 28.1 Ma, Xudong; Guo, Jinghui; Liu, Fu; Qian, Qing; Fan, Hongrui. Zircon U–Pb ages, trace elements and Nd–Hf isotopic geochemistry of Guyang sanukitoids and related rocks: Implications for the Archean crustal evolution of the Yinshan Block, North China Craton. Precambrian Research. 2013-02-11, 230: 61–78. Bibcode:2013PreR..230...61M. ISSN 0301-9268. doi:10.1016/j.precamres.2013.02.001. 
  29. ^ Dong, XiaoJie; Xu, ZhongYuan; Liu, ZhengHong; Sha, Qian. Zircon U-Pb geochronology of Archean high-grade metamorphic rocks from Xi Ulanbulang area, central Inner Mongolia. Science China Earth Sciences. 2012-01-26, 55 (2): 204–212. Bibcode:2012ScChD..55..204D. ISSN 1674-7313. S2CID 128691792. doi:10.1007/s11430-011-4360-5. 
  30. ^ LIANGZHAO, LU; SHIQIN, JIN. P-T-t paths and tectonic history of an early Precambrian granulite facies terrane, Jining district, south-east Inner Mongolia, China. Journal of Metamorphic Geology. 1993-07-01, 11 (4): 483–498. Bibcode:1993JMetG..11..483L. ISSN 0263-4929. doi:10.1111/j.1525-1314.1993.tb00166.x. 
  31. ^ Condie, Kent C.; Boryta, Mark D.; Liu, Jinzhong; Qian, Xianglin. The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton. Precambrian Research. 1992-12-01, 59 (3–4): 207–223. Bibcode:1992PreR...59..207C. ISSN 0301-9268. doi:10.1016/0301-9268(92)90057-u. 
  32. ^ 趙國春; Wilde, Simon A; A. Cawood, Peter; Lu, Liangzhao. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics. 1999-09-01, 310 (1–4): 37–53. Bibcode:1999Tectp.310...37Z. ISSN 0040-1951. doi:10.1016/s0040-1951(99)00152-3. 
  33. ^ 33.0 33.1 33.2 Chen, S.Y., Liu, H.J., 1997. Carboniferous-Permian lithofacies and paleogeography in the eastern part of the North China Platform. Regional Geology of China 16, 379–386 (in Chinese with English abstract).
  34. ^ 34.0 34.1 Cheng, Yuqi. Concise regional geology of China. Geological Publishing House. 2001. ISBN 9787116032842. OCLC 963570780. 
  35. ^ 35.0 35.1 Meng, X.H., Ge, M., 2002. Research on cyclic sequence, events and formational evolu- tion of the Sino-Korean Plate. Earth Science Frontiers 9, 125–140 (in Chinese with English abstract).
  36. ^ 36.0 36.1 36.2 Peng, Z.M., Wu, Z.P., 2006. Development features of Triassic strata and analysis of original sedimentary pattern in North China. Geological Journal of China Universities 12, 343–352 (in Chinese with English abstract).
  37. ^ 37.0 37.1 Wu, Z.P., Hou, X.B., Li, W., 2007. Discussion on Mesozoic basin patterns and evolution in the eastern North China Block. Geotectonica et Metallogenia 31, 385–399 (in Chinese with English abstract).
  38. ^ 38.0 38.1 Meng, Qing-Ren. What drove late Mesozoic extension of the northern China–Mongolia tract?. Tectonophysics. 2003-07-01, 369 (3–4): 155–174. Bibcode:2003Tectp.369..155M. ISSN 0040-1951. doi:10.1016/s0040-1951(03)00195-1. 
  39. ^ ZHOU, X; ARMSTRONG, R. Cenozoic volcanic rocks of eastern China — secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters. 1982-05-01, 58 (3): 301–329. Bibcode:1982E&PSL..58..301Z. ISSN 0012-821X. doi:10.1016/0012-821x(82)90083-8. 
  40. ^ 40.0 40.1 40.2 40.3 Kusky, Timothy M. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research. 2011-01-21, 20 (1): 26–35. Bibcode:2011GondR..20...26K. ISSN 1342-937X. doi:10.1016/j.gr.2011.01.004. 
  41. ^ Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research. 2010-02-04, 178 (1–4): 149–167. Bibcode:2010PreR..178..149S. ISSN 0301-9268. doi:10.1016/j.precamres.2010.02.003. 
  42. ^ Davis, Gregory A.; Darby, Brian J.; Yadong, Zheng; Spell, Terry L. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology. 2002, 30 (11): 1003. Bibcode:2002Geo....30.1003D. ISSN 0091-7613. S2CID 53581656. doi:10.1130/0091-7613(2002)030<1003:gateoa>2.0.co;2.