跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

纈氨黴素

維基百科,自由的百科全書
纈氨黴素
識別
CAS號 2001-95-8  checkY
ChemSpider 21493802
SMILES
 
  • C[C@@H]1C(=O)N[C@@H](C(=O)O[C@H](C(=O)N[C@@H](C(=O)O[C@@H](C(=O)N[C@@H](C(=O)O[C@H](C(=O)N[C@H](C(=O)O[C@H](C(=O)N[C@H](C(=O)O[C@H](C(=O)N[C@H](C(=O)O1)C(C)C)C(C)C)C(C)C)C)C(C)C)C(C)C)C(C)C)C)C(C)C)C(C)C)C(C)C
InChI
 
  • 1S/C54H90N6O18/c1-22(2)34-49(67)73-31(19)43(61)55-38(26(9)10)53(71)77-41(29(15)16)47(65)59-36(24(5)6)51(69)75-33(21)45(63)57-39(27(11)12)54(72)78-42(30(17)18)48(66)60-35(23(3)4)50(68)74-32(20)44(62)56-37(25(7)8)52(70)76-40(28(13)14)46(64)58-34/h22-42H,1-21H3,(H,55,61)(H,56,62)(H,57,63)(H,58,64)(H,59,65)(H,60,66)/t31-,32-,33+,34-,35+,36+,37-,38-,39+,40+,41+,42+/m1/s1
InChIKey FCFNRCROJUBPLU-DNDCDFAIBE
ChEBI 28545
性質
化學式 C54H90N6O18
摩爾質量 1111.32 g·mol⁻¹
外觀 白色固體
熔點 190 °C(463 K)
溶解性 甲醇、乙醇、乙酸乙酯、石油醚、二氯甲烷
λmax 220 nm
危險性
主要危害 神經毒性
致死量或濃度:
LD50中位劑量
4 mg/kg(大鼠,口服)[1]
若非註明,所有數據均出自標準狀態(25 ℃,100 kPa)下。

纈氨黴素Valinomycin)是一種抗生素

纈氨黴素是由數種鏈黴菌屬細胞分離而得,像是S. tsusimaensis英語Streptomyces tsusimaensisS. fulvissimus英語Streptomyces fulvissimus

纈氨黴素會將鉀離子包住,使之疏水性大增,可以穿越細胞膜。[2]纈氨黴素-鉀離子複合物的平衡常數高達106,而相對的其鈉離子複合物的平衡常數僅有10。[3]這種差異造成其特殊的生理意義。

結構

[編輯]

纈氨黴素是一種離子載體,因為他不帶有任何殘基電荷。它由重複三次的D-纈胺酸、L-纈胺酸、D-α-羥基異戊酸鹽英語alpha-hydroxyisovaleric acid,和L-乳酸環狀結合,分子間彼此由胺基酯基結合。結構中的十二個羰基使他可以緊緊抓住中間的金屬離子,且可溶於極性溶劑當中,而當中的異丙基甲基則使之可溶於非極性溶劑當中[4]


且對於離子有高度選擇性,不會接受電性及化性相仿的離子[5]

纈氨黴素的特性來自於他特殊的形狀,他是一個八面體,就像兩個組合起來的金字塔。鉀離子再經過通道時,必須先去水合(也就是離開原先包覆它的水分子)。K+在當中會被纈胺酸的6個羰基牢牢抓住,而鉀離子在當中的空間約為1.33Å,相對的如果包的是鈉離子的話,則空間只有0.95Å,明顯地比離子通道小,代表鈉離子形成離子鍵的能量高過其水合能,無法與胺基酸形成有效的離子鍵結。這導致纈氨黴素對於鉀離子的選擇性比鈉離子大了 10,000 倍。纈氨黴素在極性溶劑中會將羰基暴露在結構表面,而在非極性溶劑則會將羰基包在結構裡面,異丙基露在外面。

應用

[編輯]

有研究指出纈氨黴素可能可以治療冠狀病毒感染Vero E6細胞所造成的急性呼吸道疾病。

纈氨黴素還可作為鉀離子選擇電極的易構重組劑。[6][7]

由於此物質為一種離子載體,可以在實驗中用於摧毀細胞的電位梯度[8]

外部連結

[編輯]

參考文獻

[編輯]
  1. ^ Gad, S. C.; Reilly, C.; Siino, K.; Gavigan, F. A.; Witz, G. Thirteen cationic ionophores: their acute toxicity, neurobehavioral and membrane effects. Drug and Chemical Toxicology. 1985, 8 (6): 451–468. ISSN 0148-0545. PMID 4092618. doi:10.3109/01480548509041069. 
  2. ^ Cammann K. Ion-selective bulk membranes as models. Top. Curr. Chem. 1985, 128: 219–258. 
  3. ^ Rose, M.C.; Henkens, R.W. Stability of sodium and potassium complexes of valinomycin. BBA. 1974, 372 (2): 426–435. doi:10.1016/0304-4165(74)90204-9. [永久失效連結]
  4. ^ Thompson M and Krull UJ. The electroanalytical response of the bilayer lipid membrane to valinomycin: membrane cholesterol content. Anal. Chim. Acta英語Anal. Chim. Acta. 1982, 141: 33–47. doi:10.1016/S0003-2670(01)95308-5. 
  5. ^ Lars Rose, A. T. A. Jenkins. The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry (Amsterdam, Netherlands). 2007-5, 70 (2): 387–393 [2019-02-12]. ISSN 1567-5394. PMID 16875886. doi:10.1016/j.bioelechem.2006.05.009. (原始內容存檔於2019-10-15). 
  6. ^ Safiulina D, Veksler V, Zharkovsky A and Kaasik A. Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J. Cell. Physiol. 2006, 206 (2): 347–353. PMID 16110491. doi:10.1002/jcp.20476. 
  7. ^ Potassium ionophore Bulletin (PDF). [2014-11-22]. (原始內容存檔 (PDF)於2012-03-15). 
  8. ^ 1.File.tmp/k_potassium.pdf Potassium ionophore Bulletin]