1 − 2 + 4 − 8 + …
在數學中,1 − 2 + 4 − 8 + …是一個無窮級數,它的每一項都是2的冪而加減號則是交錯地排列。作為幾何級數, 它以 1 為首項,-2為公比。
作為實數級數,它發散到無窮,所以在一般意義下它的和不存在。在更廣泛的意義下,這一級數有一個廣義的和為⅓。
歷史上的爭論
[編輯]戈特弗里德·萊布尼茨於1673年已經細想過1 − 2 + 4 − 8 + …這個交替的發散級數。他認為經過從右邊或左邊相減,分別可以得到正無限及負無限,所以兩個答案都是錯的,而整個級數必為有限:
- "如果兩個結論里沒有一個是可被接受的,或者說因為無法判斷哪個結論可被接受,自然一般會選擇處在兩個結論中間的結論,所以這個級數和是一個有限數。"
萊布尼茲並不是非常肯定這個級數有和,但是他根據墨卡托方法推測它和⅓有關係。[1]在十八世紀,「一個數項級數的和可能等於一個並不是其逐項疊加的結果的有限數」是一個十分普通的觀點,儘管現代數學觀點同當時的觀點並沒有任何分別。[2]
當克里斯提安·沃爾夫在1712年閱讀了萊布尼茲對格蘭迪級數的解法後,[3] 他對此解法非常滿意,並設法通過這種方法去尋求更多解決發散級數問題的數學方法(如 1 − 2 + 4 − 8 + 16 − …)。簡明地說,如果某人以倒數第二項的函數來表示級數的部分和的話,他得到的結果會是或者 。 這些值的平均值是,然後假設m = n ,討論到無限後就得到了級數和是 ⅓ 。萊布尼茲的直覺在這時讓他避免了在沃爾夫的解法上費力氣。他給沃爾夫回信,說他的解法有點意思,但是因幾個原因而無效。 相鄰的兩個部分和並不收斂到任何一個特定值上,同時在任何有限條件下都有n = 2m,而不是n = m。總之,可求和級數的項最終都應收斂到零;即使 1 − 1 + 1 − 1 + … 也可以被表示成這種級數的極限。萊布尼茲勸沃爾夫再好好考慮一下,認為他說不定「可以搞出一些於他於科學都有價值的東西。」[4]
現代方法
[編輯]等比數列
[編輯]任何具有規律性、線性和穩定性的求和方法都能對等比數列(幾何級數)求和
- .
在這種情況下 a = 1 且 r = −2,所以級數和是 ⅓。
歐拉求和
[編輯]在他1755年的《Institutiones》上,萊昂哈德·歐拉採用了現在被稱為歐拉轉換的方式處理1 − 2 + 4 − 8 + …,得到了收斂級數½ − ¼ + ⅛ − 1/16 + …。因為後者的和為⅓,歐拉得出結論,認為1 − 2 + 4 − 8 + … = ⅓。[5]他對於無窮級數的看法不太遵循現代方法。如今,我們稱1 − 2 + 4 − 8 + …是歐拉可求和,其歐拉和是⅓。[6]
歐拉轉換以正項序列開始:
- a0 = 1,
- a1 = 2,
- a2 = 4,
- a3 = 8, ….
而前向差分序列是
- Δa0 = a1 − a0 = 2 − 1 = 1,
- Δa1 = a2 − a1 = 4 − 2 = 2,
- Δa2 = a3 − a2 = 8 − 4 = 4,
- Δa3 = a4 − a3 = 16 − 8 = 8, …,
這一序列與上一序列正好相同。因此對於每一n,迭代前向差分序列均以Δna0 = 1開始。級數的歐拉轉換如下:
上述級數是一收斂等比級數,按常規求和公式得出其和為⅓。
博雷爾和
[編輯]1 − 2 + 4 − 8 + … 的博雷爾和也是 ⅓;博雷爾於1896年介紹了博雷爾和極限的公式,這是他在關於1 − 1 + 1 − 1 + …[7]後的首個實例之一。
註釋
[編輯]- ^ Leibniz pp.205-207; Knobloch pp.124-125. 引自《De progressionibus intervallorum tangentium a vertice》,拉丁語原文:「Nunc fere cum neutrum liceat, aut potius cum non possit determinari utrum liceat, natura medium eligit, et totum aequatur finito.」
- ^ Ferraro and Panza,第21頁
- ^ 沃爾夫第一次對信件的引用是發表在《Acta Eruditorum》的來自德國哈雷的一封信中,日期為1712年6月12日;Gerhardt,第143-146頁。
- ^ 引言是Moore的解釋(第2-3頁);出自Gerhardt pp.147-148萊布尼茲的信,日期為1712年7月13日,來自漢諾威。
- ^ Euler p.234
- ^ 參見Korevaar p.325
- ^ Smail p. 7.
參考資料
[編輯]- Euler, Leonhard. Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum. 1755 [2010-02-26]. (原始內容存檔於2008-02-25).
- Ferraro, Giovanni; Panza, Marco. Developing into series and returning from series: A note on the foundations of eighteenth-century analysis. Historia Mathematica. 2003-02-01, 30 (1) [2022-10-12]. ISSN 0315-0860. doi:10.1016/S0315-0860(02)00017-4. (原始內容存檔於2022-10-17) (英語).
- Leibnitz, Gottfried Wilhelm freiherr von. Leibnizens gesammelte Werke, herausg. von G.H. Pertz (C.L. Grotefend, C.I. Gerhardt).. 1860 [2022-10-12]. (原始內容存檔於2022-10-12) (拉丁語).
- Knobloch, Eberhard. Beyond Cartesian limits: Leibniz's passage from algebraic to “transcendental” mathematics. Historia Mathematica. The Origins of Algebra: From al-Khwarizmi to Descartes. 2006-02-01, 33 (1) [2022-10-12]. ISSN 0315-0860. doi:10.1016/j.hm.2004.02.001. (原始內容存檔於2022-10-17) (英語).
- Korevaar, Jacob. Tauberian Theory: A Century of Developments. Springer. 2004. ISBN 3-540-21058-X.
- Leibniz, Gottfried. S. Probst, E. Knobloch, N. Gädeke , 編. Sämtliche Schriften und Briefe, Reihe 7, Band 3: 1672–1676: Differenzen, Folgen, Reihen. Akademie Verlag. 2003 [2010-02-26]. ISBN 3-05-004003-3. (原始內容存檔於2013-10-17).
- Moore, Charles. Summable Series and Convergence Factors. AMS. 1938. LCC QA1 .A5225 V.22.
- Smail, Lloyd. History and Synopsis of the Theory of Summable Infinite Processes. University of Oregon Press. 1925. LCC QA295 .S64.