跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

討論:貝爾曼-福特算法

頁面內容不支援其他語言。
維基百科,自由的百科全書
基礎條目 貝爾曼-福特算法屬於維基百科數學主題的基礎條目第五級。請勇於更新頁面以及改進條目。
          本條目屬於下列維基專題範疇:
數學專題 (獲評未評級低重要度
本條目屬於數學專題範疇,該專題旨在改善中文維基百科數學類內容。如果您有意參與,請瀏覽專題主頁、參與討論,並完成相應的開放性任務。
 未評級未評  根據專題品質評級標準,本條目尚未接受評級。
   根據專題重要度評級標準,本條目已評為低重要度
電腦和資訊科技專題 (獲評中重要度
本條目屬於電腦和資訊科技專題範疇,該專題旨在改善中文維基百科資訊科技相關條目類內容。如果您有意參與,請瀏覽專題主頁、參與討論,並完成相應的開放性任務。
 未評級未評  根據專題品質評級標準,本條目尚未接受評級。
   根據專題重要度評級標準,本條目已評為中重要度


SPFA作者

[編輯]

目前版本的條目中,提到「SPFA算法是西南交通大學段凡丁於1994年發表的」。但早在1975(1976)年就已存在相同的算法,名為「帶修正的Bellman-Ford」。

關於「SPFA即是標號修正法的Bellman-Ford」的證據
[編輯]

在Bertsekas的1993年論文當中,提到

   “In label correcting methods, the selection of the node to be removed from V is faster than in label setting methods, at the expense of multiple entrances of nodes in V.  These methods use a queue Q to maintain the candidate list V.  Nodes can be inserted or removed from the queue in O(1) operations;” ...(略)... “At each iteration the node removed from V is the top node of Q.”
   翻译:比起固定标号法,标号修正法在V中选择结点的速度更快。标号修正法使用一个队列Q来维护候选列表V。结点可以在O(1)个操作之内加入/弹出队列。……每轮选取Q的队首,从V中移除。(这里比较绕。V指的是候选点集,比如Dijkstra的堆和SPFA的队列。Q和V是同一个东西,V是抽象数据结构,Q是具体实现。)

並且指出有三種「流行的」入隊方法。其中一種便是「The Bellman-Ford method」:「the node that enters V, is added at the bottom of Q. Thus, nodes enter and exit V in first-in/first-out fashion.」(翻譯:進入V的結點被加進Q的隊尾。換言之,V是一個先進先出的數據結構。)

該論文甚至提及當今流行的兩大「SPFA優化」之一:SLF(另一優化為LLL)。進一步證明了SPFA實際就是Bellman-Ford變種的別名。

論文: D.P. Bertsekas. A simple and fast label correcting algorithm for shortest paths. Networks, 23:703–709, 1993.

在線閱讀: [1] [2]

關於標號修正法及其在Bellman-Ford上的應用的發明時間
[編輯]

暫未找到原作者和原論文(原始論文可能並不存在)。目前我考察到的最早的文獻是1976年Bruce L. Golden的論文:

Golden, B., 1976. 「Shortest-Path Algorithms: A Comparison,」 Operations Research, Vol.44, pp. 1164-1168.

可以在這裏閱讀:[3]

關於標號修正法:「Labeling methods for computing shortest paths can be divided into two general classes, "label-setting" and "label-correcting" methods」(譯文:求最短路的算法可以粗分為兩大類:固定標號法和標號修正法。)

關於標號修正法的Bellman-Ford:「Bellman's algorithm solves the problem in at most additions and comparisons or detects the existence of a negative cycle. This algorithm is an example of the label-correcting approach in which no node labels are considered permanent until they all are, at termination.」(譯文:Bellman的算法能在個加法和比較運算之內求出最短路或檢出負權環。在Bellman算法這類的標號修正法中,每個結點的距離都可能不斷更新,直到算法結束時才能確定下來。)

關於SPFA
[編輯]

考慮到以下理由:

  • 目前SPFA這個詞在國內已經十分普及,尤其是算法競賽當中,可說是人人皆知,甚至被傳播到日本九州大學([4])。
  • 個人認為這個名字並不具有很大的誤導性。

如果貿然刪除/合併SPFA相關的條目,會對讀者造成很大不便。因此我認為應當修改所有關於SPFA的條目,指出:

  • 「SPFA為標號修正法Bellman-Ford的別名。」
  • 「帶有標號修正的Bellman-Ford在1976年或更早就已存在。SPFA的別名由西南交通大學段凡丁於1994提出。」並在此處引用段凡丁論文
  • 「SPFA算法在實際應用中效果良好。一般認為其期望複雜度為;尚無已知的證明。最壞複雜度為,並且存在已知的方法可以構造特殊數據達到最壞情況。」並移除此處對段凡丁論文的引用。O(kE)的記號具有嚴重的誤導性。請將時間複雜度寫為O(E),非漸進時間開銷寫為T(V,E) = kE,謝謝。

如果有更好的提議歡迎討論。


附:有待更正的相關條目(不完全列表)

附:相關資料

sheep0x留言2016年9月30日 (五) 09:22 (UTC)[回覆]

3.2 隊列優化是否應該變成一個單獨條目?

[編輯]

參見:en:Shortest Path Faster Algorithm

抱歉沒有注意到上面的討論,我認為應該添加與en:Shortest Path Faster Algorithm對應的SPFA算法,而不應該重定向—以上未簽名的留言由Ctyzxx對話貢獻)於2017年8月12日 (六) 00:11 (UTC)加入。[回覆]