英文维基 | 中文维基 | 日文维基 | 草榴社区
定比分點公式是平面幾何學的基本公式。若D點在B點與C點之間,向量AD即可表達成向量AB與向量AC。
A D → = | C D → | | B C → | A B → + | B D → | | B C → | A C → {\displaystyle {\overrightarrow {AD}}={\frac {|{\overrightarrow {CD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {AB}}+{\frac {|{\overrightarrow {BD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {AC}}}
當A位於原點,即AD、AB、AC為位置向量,利用公式可由B點、C點得出D點的坐標。
B D → = | B D → | | B C → | B C → = | B D → | | B C → | ( A C → − A B → ) {\displaystyle {\overrightarrow {BD}}={\frac {|{\overrightarrow {BD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {BC}}={\frac {|{\overrightarrow {BD}}|}{|{\overrightarrow {BC}}|}}({\overrightarrow {AC}}-{\overrightarrow {AB}})}
A D → = A B → + B D → = | C D → | | B C → | A B → + | B D → | | B C → | A C → {\displaystyle {\overrightarrow {AD}}={\overrightarrow {AB}}+{\overrightarrow {BD}}={\frac {|{\overrightarrow {CD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {AB}}+{\frac {|{\overrightarrow {BD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {AC}}}
設 B D → = λ D C → {\displaystyle {\overrightarrow {BD}}=\lambda {\overrightarrow {DC}}} ,則 A D → = A B → + λ A C → 1 + λ {\displaystyle {\overrightarrow {AD}}={\frac {{\overrightarrow {AB}}+\lambda {\overrightarrow {AC}}}{1+\lambda }}} [1][2]
考慮向量AO、AB、AE,有 A O → = | O E → | | B E → | A B → + | O B → | | B E → | A E → {\displaystyle {\overrightarrow {AO}}={\frac {|{\overrightarrow {OE}}|}{|{\overrightarrow {BE}}|}}{\overrightarrow {AB}}+{\frac {|{\overrightarrow {OB}}|}{|{\overrightarrow {BE}}|}}{\overrightarrow {AE}}}
| A O → | | A D → | A D → = | O E → | | B E → | A B → + | O B → | | B E → | ⋅ | A E → | | A C → | A C → {\displaystyle {\frac {|{\overrightarrow {AO}}|}{|{\overrightarrow {AD}}|}}{\overrightarrow {AD}}={\frac {|{\overrightarrow {OE}}|}{|{\overrightarrow {BE}}|}}{\overrightarrow {AB}}+{\frac {|{\overrightarrow {OB}}|}{|{\overrightarrow {BE}}|}}\cdot {\frac {|{\overrightarrow {AE}}|}{|{\overrightarrow {AC}}|}}{\overrightarrow {AC}}}
考慮向量AD、AB、AC,又有 A D → = | C D → | | B C → | A B → + | B D → | | B C → | A C → {\displaystyle {\overrightarrow {AD}}={\frac {|{\overrightarrow {CD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {AB}}+{\frac {|{\overrightarrow {BD}}|}{|{\overrightarrow {BC}}|}}{\overrightarrow {AC}}}
| A O → | | A D → | ⋅ | C D → | | B C → | = | O E → | | B E → | {\displaystyle {\frac {|{\overrightarrow {AO}}|}{|{\overrightarrow {AD}}|}}\cdot {\frac {|{\overrightarrow {CD}}|}{|{\overrightarrow {BC}}|}}={\frac {|{\overrightarrow {OE}}|}{|{\overrightarrow {BE}}|}}}
| A O → | | A D → | ⋅ | B D → | | B C → | = | O B → | | B E → | ⋅ | A E → | | A C → | {\displaystyle {\frac {|{\overrightarrow {AO}}|}{|{\overrightarrow {AD}}|}}\cdot {\frac {|{\overrightarrow {BD}}|}{|{\overrightarrow {BC}}|}}={\frac {|{\overrightarrow {OB}}|}{|{\overrightarrow {BE}}|}}\cdot {\frac {|{\overrightarrow {AE}}|}{|{\overrightarrow {AC}}|}}}
| A O → | | A D → | = | O E → | | B E → | + | O B → | | B E → | ⋅ | A E → | | A C → | {\displaystyle {\frac {|{\overrightarrow {AO}}|}{|{\overrightarrow {AD}}|}}={\frac {|{\overrightarrow {OE}}|}{|{\overrightarrow {BE}}|}}+{\frac {|{\overrightarrow {OB}}|}{|{\overrightarrow {BE}}|}}\cdot {\frac {|{\overrightarrow {AE}}|}{|{\overrightarrow {AC}}|}}} [3]