跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

稀土矿物

维基百科,自由的百科全书
稀土矿物 (以一枚直径19毫米1美分硬币来与矿石做对比)
位于中国包头白云鄂博矿区假色卫星相片,2006年

稀土矿物(英语:Rare earth mineral)是指主要成分包含一种或是多种稀土元素矿物。稀土矿物通常发现于性至过碱性火成岩组合中、与碱性岩浆伴生的伟晶岩中,或是存在/伴生于碳酸盐深成岩中。[1]具有钙钛矿结构的矿物是稀土元素碱性错合物的常见宿主。[2]来自地幔的碳酸盐熔体也是稀土的载体。[3]与碱性岩浆作用相关的热液矿床含有多种稀土矿物。[1]

而稀土元素是一组共17种,银白色、质软、具有光泽,但彼此性质相似难以区别的金属元素[4][5] 虽然名为稀土元素,但实际上这些元素在地壳中的数量相对丰富,其中丰度最高的是地壳中排名第25常见的元素(参见地壳元素丰富度列表),占68百万分率,含量超过。然而,由于稀土元素的地球化学特性,它们在地壳中分布通常十分分散,而罕有富集到高浓度的稀土矿物存在,因此世界上少有具开采价值的矿场,故得“稀土”之名。[6]

中国的储藏量占全世界的36.7%,[7]但中国的产量曾占全世界的95%以上,[8]在2017年占全世界的81%。到2021年中国的产量占全世界的60.63%,而同年美国的产量排名第2,占比为15.52%。[9]

中国的白云鄂博矿区是世界已知最大的稀土矿物蕴藏区。[10]在2005年,这个矿区的稀土元素产量曾高达全世界的45%。[11][12][13]

常见稀土矿物

[编辑]

以下所列的是比较常见的热液稀土矿物,以及经常含有显著稀土元素替代物的矿物:[14]

开采作业对环境的可能影响

[编辑]

在自然环境中的稀土元素浓度非常低。蕴藏这类资源的矿山通常位于环境和社会标准非常低的国家,因为矿山的开发,而导致有侵犯人权、森林砍伐的事情,并且污染到当地的土地和水源。[15][16]

在采矿和工业生产场所附近,稀土元素的浓度会上升到正常背景水准的许多倍。稀土元素一旦进入环境,就会渗入土壤中,然后它们的迁移取决于多种因素,例如侵蚀作用、风化作用、pH值、降水和地下水等。如同金属一样,它们可根据土壤条件形成,无论是移动,或是被吸附到土壤颗粒中。根据它们的生物利用度,稀土元素可被植物吸收,然后被人类和牲畜摄入。对于稀土元素的开采,使用( 肥料添加剂)和磷肥的生产,都会导致稀土元素污染 。[17]此外,在萃取稀土元素的过程中会用到强酸,而这些酸会渗入环境,并通过水体而导致水生环境酸化。

对于稀土元素的开采、提炼和回收,如果管理不当,会对环境造成严重后果。稀土元素尾矿中的钍和铀因有低放射性,而存有潜在危害,[18]这些物质如果处理不当,会对环境造成广泛的伤害。

参见

[编辑]

参考文献

[编辑]
  • Jones, Adrian P., Francis Wall and C. Terry Williams, eds. (1996) Rare Earth Minerals: Chemistry, Origin and Ore Deposits, The Mineralogy Society Series #7, 372 pp. ISBN 978-0-412-61030-1
  1. ^ 1.0 1.1 Dostal, Jaroslav. Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks. ResearchGate. April 2016. doi:10.5382/Rev.18.02. 
  2. ^ Campbell, Linda S; Henderson, Paul. Rare Earth Chemistry of Perovskite Group Minerals from the Gardiner Complex, East Greenland. Mineralogical Magazine. April 1997, 61 (405): 1970212. doi:10.1180/minmag.1997.061.405.04. 
  3. ^ Yaxley, Gregory M.; Sujoy Ghosh, Sujoy. Deep Carbon. 6 - CO2-Rich Melts in Earth: Cambridge University Press. : 129 - 162 [2022-06-20]. (原始内容存档于2022-06-27). They are also of particular economic importance as hosts or sources of many critical metals, including the rare earth elements (REEs) Nb, Ta, P, and others. 
  4. ^ Professor of Chemistry at University College London, Andrea Sella, YouTube上的Andrea Sella: "Insight: Rare-earth metals", Interview on TRT World / Oct 2016, minutes 4:40 - ff.
  5. ^ T Gray. Lanthanum and Cerium. The Elements. Black Dog & Leventhal. 2007: 118–122. 
  6. ^ Haxel G.; Hedrick J.; Orris J. Rare Earth Elements—Critical Resources for High Technology (PDF). Edited by Peter H. Stauffer and James W. Hendley II; Graphic design by Gordon B. Haxel, Sara Boore, and Susan Mayfield. United States Geological Survey. 2002 [2012-03-13]. USGS Fact Sheet: 087‐02. (原始内容 (PDF)存档于2010-12-14). However, in contrast to ordinary base and precious metals, REE have very little tendency to become concentrated in exploitable ore deposits. Consequently, most of the world's supply of REE comes from only a handful of sources. 
  7. ^ Suzanne Goldenberg. Rare earth metals mine is key to US control over hi-tech future: Approval secured to restart operations, which could be crucial in challenging China's stranglehold on the market. The Guardian (London). 26 December 2010 [2022-06-20]. (原始内容存档于2022-06-14). 
  8. ^ Tse, Pui-Kwan. USGS Report Series 2011–1042: China's Rare-Earth Industry. pubs.usgs.gov. [2018-04-04]. (原始内容存档于2022-01-20). 
  9. ^ Distribution of rare earths production worldwide as of 2021, by country. statista. 2022-03-04 [2022-06-12]. (原始内容存档于2022-06-08). 
  10. ^ Rare Earths: The Hidden Cost to Their Magic" (Part 2), Distillations Podcast and transcript, Episode 242. Science History Institute. June 25, 2019 [2019-08-28]. (原始内容存档于2019-08-03). 
  11. ^ Lawrence J. Drewa, Meng Qingrunb and Sun Weijun. The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos. 1990, 26 (1–2): 43–65. doi:10.1016/0024-4937(90)90040-8. 
  12. ^ Xue-Ming Yang, Michael J. Le Bas. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos. 2004, 72 (1–2): 97–116. doi:10.1016/j.lithos.2003.09.002. 
  13. ^ Chengyu Wu. Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resource Geology. 2007, 58 (4): 348–354. doi:10.1111/j.1751-3928.2008.00069.x. (原始内容存档于2012-12-17). 
  14. ^ Rare element substitution a tricky proposition. CHEMISTRYWORLD. 2014-01-06 [2022-01-07]. (原始内容存档于2022-03-23). 
  15. ^ Rizk, Shirley. What colour is the cloud?. European Investment Bank. 2019-06-21 [2020-09-17]. (原始内容存档于2021-04-14) (英语). 
  16. ^ Standaert, Michael. China Wrestles with the Toxic Aftermath of Rare Earth Mining. Yale Environment 360. Yale School of the Environment. 2019-07-02 [2021-06-16]. (原始内容存档于2022-07-09). 
  17. ^ Volokh, A. A.; Gorbunov, A. V.; Gundorina, S. F.; Revich, B. A.; Frontasyeva, M. V.; Chen Sen Pal. Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Science of the Total Environment. 1990-06-01, 95: 141–148. Bibcode:1990ScTEn..95..141V. ISSN 0048-9697. PMID 2169646. doi:10.1016/0048-9697(90)90059-4 (英语). 
  18. ^ Bourzac, Katherine. "Can the US Rare-Earth Industry Rebound?"页面存档备份,存于互联网档案馆Technology Review. 2010-10-29.

外部链接

[编辑]
外部媒体链接
音频
audio icon "Rare Earths: The Hidden Cost to Their Magic", Distillations Podcast and transcript, Episode 242, June 25, 2019, Science History Institute
视频
video icon “10 ways rare earth elements make life better”, animation, Science History Institute
video icon Rare Earth Elements: The Intersection of Science and Society, presentation and discussion led by Ira Flatow, Science History Institute, 2019-9-24