跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

韦德伯恩-埃瑟林顿数

维基百科,自由的百科全书

图论中,韦德伯恩-埃瑟林顿数是由计算每张图有多少弱二叉树问题而得出的数列。

最初的几个韦德伯恩-埃瑟林顿数为: 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391,... (OEIS数列A001190

组合意义上的诠释

[编辑]
奥特树与弱二叉树,两种通过韦德伯恩-埃瑟林顿数计数的有根二叉树。

名字由来

[编辑]

韦德伯恩-埃瑟林顿数的名字由来是两个数学家艾弗·埃瑟林顿约瑟夫·韦德伯恩

参考资料

[编辑]
  • OEIS.A001190
  • S. J. Cyvin et al., "Enumeration of constitutional isomers of polyenes," J. Molec. Structure (Theochem) 357 (1995): 255–261
  • I. M. H. Etherington, "Non-associate powers and a functional equation," Math. Gaz. 21 (1937): 36–39, 153
  • I. M. H. Etherington, "On non-associative combinations," Proc. Royal Soc. Edinburgh, 59 2 (1939): 153–162.
  • S. R. Finch, Mathematical Constants. Cambridge: Cambridge University Press (2003): 295–316
  • F. Murtagh, "Counting dendrograms: a survey," Discrete Applied Mathematics 7 (1984): 191–199
  • J. H. M. Wedderburn, "The functional equation " Ann. Math. 24 (1923): 121–140