二次分類器是在機器學習中,使用二次曲面來將物件或事件分成兩個或以上的分類。
它是線性分類器的一般化版本。
統計分類考慮一個集合,每一個元素是一個對物件或事件觀察後所得的向量x,每一個都被分成y。
這個集合一般被稱為訓練資料。
問題是在於,要如何決定一個新的觀察項目其最好的類別應是哪一種。
對一個二次分類器,它假設其解會成二次關係,所以y是由以下來決定:
在特列的情況下,每個觀察牽涉到兩個測量項。
這意味著,這切分的平面將是圓錐曲線之一(如:直線、圓、橢圓、拋物線、雙曲線)。
二次判別分析是非常類似於線性判別分析的。