代數圖論
代數圖論(algebraic graph theory)是用代數方法處理圖論問題的數學分支。這不同於幾何、組合或算法的方法。代數圖論有三個主要分支,分別使用線性代數,使用群論,以及研究圖不變量。
代數圖論的分支
[編輯]使用線性代數
[編輯]代數圖論的第一個分支用線性代數來研究圖,特別是研究圖的鄰接矩陣或拉普拉斯矩陣的譜(這部分代數圖論也被稱為譜圖理論)。以佩特森圖為例,鄰接矩陣的譜為(-2, -2, -2, -2, 1, 1, 1, 1, 1, 3)。通過一些定理把譜的性質與圖的其他性質聯繫起來。舉一個簡單的例子,對於直徑為D的連通圖,它的譜至少有D+1個不同的值[1]。圖的譜可用於分析網絡的同步。
使用群論
[編輯]代數圖論的第二個分支用群論來研究圖,尤其是自同構群以及幾何群論。重點是根據對稱性對圖進行分類,以及不同類別之間的包含關係。某些特殊類別的圖足夠少,可以把它們列舉出來。根據Frucht定理,所以的群都可以表示成連通圖的自同構群[2]。另外,給定一個群,可以作出相應的凱萊圖,凱萊圖有一些性質與群的結構相關[1]。
代數圖論的第二個分支與第一個分支有聯繫,因為圖的對稱性在圖的譜中也有反映。尤其是,對於高度對稱的圖,例如佩特森圖,不同的特徵值的數目很少[1](佩特森圖有3個不同的特徵值,在直徑相等的圖中是最少的)。凱萊圖的譜與群的結構直接相關,尤其是與不可約特徵標相關[1][3]。
研究圖不變量
[編輯]最後,代數圖論的第三個分支研究圖不變量的代數性質,尤其是色多項式、Tutte多項式與扭結不變量。例如,圖的色多項式計算了頂點著色的個數。佩特森圖的色多項式為[1]。這意味著佩特森圖不能用1種或2種顏色著色,但可以用3種顏色著色,且著色方式有120種。代數圖論的這一領域的許多工作都是為了證明四色定理而啟發。可是仍然有許多未解決的問題,例如如何判定兩個圖的色多項式相同,以及如何判定一個多項式是不是某個圖的色多項式。
另見
[編輯]參考資料
[編輯]- ^ 1.0 1.1 1.2 1.3 1.4 Biggs, Norman (1993), Algebraic Graph Theory (2nd ed.), Cambridge: Cambridge University Press, ISBN 0-521-45897-8
- ^ R. Frucht. Graphs of Degree 3 with given abstract group, Can. J. Math. 3 1949.
- ^ Babai, L (1996), "Automorphism groups, isomorphism, reconstruction", in Graham, R; Grötschel, M; Lovász, L, Handbook of Combinatorics, Elsevier
- Godsil, Chris; Royle, Gordon (2001), Algebraic Graph Theory, Graduate Texts in Mathematics, 207, New York: Springer-Verlag.