跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

查普曼-科爾莫戈羅夫等式

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

數學機率論中,尤其是隨機過程理論中,查普曼-科爾莫戈羅夫等式是一個重要的結論。它將一個隨機過程的幾個不同維的聯合分布函數聯繫在一起。

假設 { fi } 是一個隨機過程,即一個隨機變數集合(每個元素對應一個只命名不排序的索引)。 記

為從f1fn的各隨機變數的聯合分布函數,則查普曼-科爾莫戈羅夫等式為:

也就是說,這是一個直接定義在干擾隨機變數上的條件機率。 (注意這裡各隨機變數的順序不重要)

該公式名稱來自數學家西德尼·查普曼安德雷·科摩哥洛夫

特化為馬可夫鏈

[編輯]

如果隨機過程特定為馬可夫鏈,查普曼-科爾莫戈羅夫等式就是關於轉移機率的公式。在馬可夫鏈中,隨機變數在一個按時間排序的數組中。按馬可夫性質(無記憶性質),

(其中條件機率時間的轉移機率。查普曼-科爾莫戈羅夫等式簡化為:

如果馬可夫鏈的狀態空間的機率分布是離散的,查普曼-科爾莫戈羅夫等式可表示為(可到無窮維的)矩陣相乘

(其中是轉移矩陣,t時間的系統狀態),則對於系統狀態空間中的任意兩個點ij

相關條目

[編輯]

參考文獻

[編輯]