跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

硼的同素異形體

維基百科,自由的百科全書
非晶體硼粉末
硼(可能混合同素異形體)

有多種同素異形體,包括晶體無定形體。現已知(已製備)的結晶狀硼有α菱面體硼晶、β菱面體硼晶以及β四方硼晶;此外,在某些特定情況下,α四方硼晶、γ正交硼晶等同素異形體結構也能被製備出來。非結晶體的形式有兩種已知,一種為精細粉末,另外一種為玻璃狀的固體[1][2]。雖然有至少14種甚至更多的硼同素異形體被發表出來,但是這些被發現的組成卻是根據不足的證據、沒有經過實驗確認、被認為是混合的同素異形體或是含有雜質來穩定其硼的結構[3][2][4][5]。而硼以β菱面體硼晶形式存在者是最穩定的,其餘次之,所以在室溫下的轉化率低下,也因此五個不同型態能夠在室溫下共存。非結晶粉末狀硼和多晶體的β菱面體硼晶最為相似,後者是一種堅硬的[注 1]灰料,重量卻比鋁還要輕上十個百分點,其熔點(2080 °C)比鋼高幾百度[6]

元素態的硼能在星塵及隕石找到,但卻不存在於地球上含氧量高的環境。因為它不容易從其化合物中被萃取出來。早先的萃取方法包含將三氧化二硼以如的晶屬還原。但是,此方法產物容易混雜其餘金屬硼化物。現今硼純化是在高溫下以還原揮發性鹵化硼[7][8]。而半導體產業是用之非常純的硼之製備,是在高溫下以區熔或是柴可拉斯基法分解乙硼烷[9]。從純硼中製備硼單晶則更加困難,原因是多態現象以及硼傾向與雜質反應;典型的晶體大小為~0.1 mm[10]

理化性質概要

[編輯]
硼的型態 α-R α-T β-R β-T γ 非結晶體
粉末
玻璃狀
對稱 三方晶系 四方晶系 三方晶系 四方晶系 正交晶系 半隨機 半隨機
發生率 常見 特別 常見 常見 特別
原子/晶胞大小[11] 12 50 105‒108 192 28
密度(g/cm3[1] 2.46 2.29‒2.39[12] 2.35 2.36 2.52 1.73 2.34–35
維氏硬度試驗(GPa)[13][14] 42 45 50–58
體積模量(GPa)[14][15] 224 184 227
能隙(eV) 2[16] 1.6[17] ~2.6[18] 2.1[14] 0.56–0.71[19]
顏色 晶體為明亮的紅色[20] 黑色及不透明, 有金屬光澤[21] 深色至閃亮的銀灰色[1][2] 黑/紅[注 2][22] 深灰色[23] 黑色至棕色[注 3] 不透明的黑色[1]
發表時間[24] 1958 1943/1973[注 4] 1957 1960 2009 1808 1911[25][26]

α菱面體硼晶

[編輯]

α菱面體硼晶是含有12個硼原子的單胞體。這些B
12
的單胞體結構上為每一個單胞體與鄰近的五個單胞體結合的正二十面體結構 。如果這些鍵結是常規下的共價鍵,則每個硼貢獻出五個電子。但是硼只有三個價電子,所以科學家們認為B
12
正二十面體是由3-中心電子缺乏鍵結形成的,意思為電子電荷會累積在三個鄰近原子構成的三角形中心[15]

單一的 B
12
正二十面體不穩定;雖然硼並非分子化合物,但是它卻含有(非常規的)共價鍵。

α四方硼晶

[編輯]

純α四方硼晶的合成只能在等向性碳化硼(B50C2)或氮化物(B50N2)的底層基質板上發生,α四方硼晶會沉積在比層基質板上形成一層薄膜[1]。而大部分α四方硼晶的合成實例[27]發生在富含硼的碳化物或氮化物[28][29]

β菱面體硼晶

[編輯]

β菱面體硼晶為含有105-108個硼原子的單胞體。大多數的原子組成 B12 離散二十面體;少數組成部分相互貫穿的二十面體,其中包含兩個三角面多面體型的B10單元,以及一個中心硼原子[30]。在以前,研究者不甚明瞭在普通環境下α或β兩個結構何者才是最穩定態,但後來對此漸漸取得了共識,β結構於熱力學上為最穩定的同素異形體[11][31][32]

β四方硼晶

[編輯]

1960年,科學家在攝氏溫度1270–1550 °C環境下於熱絲、絲或絲上以氫還原BBr3(即化學氣相沉積)合成了β四方硼晶[33]。後來的研究更重新進行了此合成並確認產物中沒有雜質[34][35][36][37]

γ-硼晶

[編輯]
γ-硼:文托夫的X-光繞射數據[38](下)與現代數據(上)比較[11]

此γ-態為一種像氯化鈉的晶體排列著的B12二十面體及B2兩種形式原子。可藉由壓縮別種型態的硼至12–20 GPa和加熱到1500–1800 °C而生成,並在環境下維持穩定[11][14]。證據證明在這種結構中有明顯的電荷從B2原子對移轉至B12二十面體[11],由晶格動力學也可推測出此種顯著的遠距離靜電相互作用。

文托夫於1965年發表此態的硼[38][39],然而此硼的結構與化學組成皆不確定。其結構是通過「從頭計演算法晶體結構預測計算[11]後再以X射線晶體學手段確認的[14]

立方體硼

[編輯]

Sullenger等在1969年[34]以及 McConville 等在1976年[40]中階發表了此種於氬電漿實驗中觀察到的立方體硼同素異形體。此立方體硼為含有1705±3個原子,密度為2.367 g/cm3的單胞晶體。雖然這種同素異形體偶爾會在文獻中被提及到[41],但是沒有後續的正式出版、研究確認或是任何證據否決這種同素異形體的存在。多諾霍於1982年提到[42] 這種單胞晶體內的原子數量不顯示它與正二十面體相關(正二十面體是硼同素異形體共同的結構形狀)。

高壓超導態

[編輯]

將硼加壓至超過160 GPa會產生一種尚未明瞭的型態。 與其他型態不同,這種硼不是半導體,而是金屬,並且有超導現象,臨界溫度在160 GPa 下為4 K、250 GPa 時上升到11 K[43]。這種壓力下的結構轉變發生在理論預測的二十面體分解時[44]。揣測下的結構狀態包含面心立方(類似於Al),α-Ga,和體心四方(類似於In)[45]。它也被認為其非金屬-金屬的轉變和碘的轉變一樣,是一個簡單的能隙關閉的結果,而非結構的轉變[46]

硼球烯

[編輯]

這種似球形的同素異形體分子硼球烯(B40)於2014年七月被發表[47]

非晶體硼

[編輯]

非晶體硼包括B12 二十面體,會沒有固定順序的互相隨機結合[48]。 純的非晶體硼以再1000 °C以下熱分解乙硼烷生成。在1000 °C 時以退火處理會將非晶體硼轉變為β菱面體硼晶[49]。非晶體硼的奈米線(直徑30-60 nm)[50] 或纖維[51]可由濺渡沉積雷射輔助化學氣相沉積製備;也可經由1000 °C退火處理轉變為β菱面體硼晶奈米線[50]

注釋

[編輯]
  1. ^ 維氏硬度試驗 comparable to that of cubic 氮化硼
  2. ^ Black when viewed by reflected light; red by transmitted light
  3. ^ High purity amorphous boron powder is black whereas impure samples have a brown appearance: Lidin R. A. (1996). Inorganic substances handbook. New York: Begell House. p. 22; Zenkov, V. S. Adsorption-chemical activity of finely-dispersed amorphous powders of brown and black boron used in synthesizing metal borides. Powder Metallurgy and Metal Ceramics. 2006, 45 (5–6): 279–282 (279). doi:10.1007/s11106-006-0076-z. ; Loryan, V. E.; Borovinskaya, I. P.; Merzhanov, A. G. On combustion of boron in nitrogen gas. International Journal of Self-Propagating High-Temperature Synthesis. 2011, 20 (3): 153–155. doi:10.3103/S106138621103006X. ; Kanel, G. I.; Utkin, A. V.; Razorenov, S. V. Rate of the energy release in high explosives containing nano-size boron particles (PDF). Central European Journal of Energetic Materials. 2009, 6 (1): 15–30 (18) [2015-01-17]. (原始內容存檔 (PDF)於2014-08-12). 
  4. ^ 1943 was when the supposed structure was first reported; 1973 was when it was first reported that pure α-tetragonal boron can only be synthesized as thin layers deposited on an underlying substrate of isotropic boron carbide or nitride: Kunzmann, P. M. (1973). Structural studies on the crystal chemistry of icosahedral boron framework structure derivatives. PhD thesis. Cornell University; Amberger, E. (1981). "Elemental boron". In Buschbeck, K. C.. Gmelin handbook of inorganic and organometallic chemistry: B Boron, Supplement 2 (8th ed.). Berlin: Springer-Verlag. pp. 1–112 (60–61). ISBN 3-540-93448-0.
  5. ^ Other (different) phase diagrams have been reported:, Shirai, K. Electronic structures and mechanical properties of boron and boron-rich crystals (part 2). Journal of Superhard Materials. 2010, 2 (5): 336–345 (337). doi:10.3103/S1063457610050059. ; Parakhonskiy, G.; Dubrovinskaia, N.; Bykova, E.; Wirth, R.; Dubrovinsky, L. Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma. Scientific Reports. 2011, 1 (96): 1–7 (2). Bibcode:2011NatSR...1E..96P. doi:10.1038/srep00096. 

引用

[編輯]
  1. ^ 1.0 1.1 1.2 1.3 1.4 Wiberg 2001,第930頁.
  2. ^ 2.0 2.1 2.2 Housecroft & Sharpe 2008,第331頁.
  3. ^ Donohue 1982,第48頁.
  4. ^ Lundström, T. The solubility in the various modifications of boron. Zuckerman, J. J.; Hagen, A. P. (編). Inorganic reactions and methods. Vol. 13: The formation of bonds to group-I, -II, and -IIIB elements. New York: John Wiley & Sons: 196–97. 2009. ISBN 0-470-14549-8. 
  5. ^ Oganov et al. 2009,第863頁.
  6. ^ D. R. Lide (ed). Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, and critical temperatures of the elements. CRC Handbook of Chemistry and Physics, 84th Edition. Boca Raton, Florida: CRC Press. 2003. 
  7. ^ D. R. Stern; Lynds, Lahmer. High-Purity Crystalline Boron. Journal of the Electrochemical Society. 1958, 105 (11): 676. doi:10.1149/1.2428689. 
  8. ^ A. W. Laubengayer; D. T. Hurd; A. E. Newkirk; J. L. Hoard. Boron. I. Preparation and properties of pure crystalline boron. Journal of the American Chemical Society. 1943, 65 (10): 1924. doi:10.1021/ja01250a036. 
  9. ^ L. I. Berger. Semiconductor materials. CRC Press. 1996: 37–43. ISBN 0-8493-8912-7. 
  10. ^ Will & Kiefer 2001.
  11. ^ 11.0 11.1 11.2 11.3 11.4 11.5 11.6 Oganov et al. 2009.
  12. ^ Amberger 1981,第60頁.
  13. ^ V. L. Solozhenko, O. O. Kurakevych and A. R. Oganov. On the hardness of a new boron phase, orthorhombic γ-B28. Journal of Superhard Materials. 2008, 30 (6): 428–429. doi:10.3103/S1063457608060117. 
  14. ^ 14.0 14.1 14.2 14.3 14.4 Zarechnaya et al. 2009.
  15. ^ 15.0 15.1 Nelmes et al. 1993.
  16. ^ Madelung 1983,第10頁.
  17. ^ Madelung 1983,第11頁.
  18. ^ Kumashiro, Y (編). Boron and boron-rich compounds. Electric Refractory Materials. New York: Marcel Dekker. 2000: 589‒654 (633, 635). ISBN 0-8247-0049-X. 
  19. ^ Madelung 1983,第12頁.
  20. ^ Donohue 1982,第57頁.
  21. ^ Hoard, J. L.; Hughes, R. E. Chapter 2: Elementary boron and compounds of high boron content: Structure, properties and polymorphism. Muetterties, E. L. (編). The chemistry of boron and its compounds. New York: John Wiley & Sons. 1967: 25–154 (29, 82). 
  22. ^ Donohue 1982,第78頁.
  23. ^ Oganov et al. 2009,第863–64頁.
  24. ^ Donohue 1982,第48, 57, 61頁.
  25. ^ Weintraub, E. On the properties and preparation of the element boron. The Journal of Industrial and Engineering Chemistry. 1911, 3 (5): 299–301 (299). doi:10.1021/ie50029a007. Both in appearance and in its curved conchoidal fracture the lump and the broken-up pieces most nearly resemble 黑鑽石 ... with an amorphous structure. 
  26. ^ Laubengayer, A. W.; Brandaur, A. E.; Brandaur, R. L. Progress in the preparation and determination of the properties of boron. Journal of Chemical Education. 1942, 19 (8): 382–85. Bibcode:1942JChEd..19..382L. doi:10.1021/ed019p382. Boron ... shows a considerable tendency to assume the vitreous condition ... Volatile compounds of boron such as the halides and the hydrides have been decomposed by passing their vapors through an arc or by bringing them in contact with a hot surface or filament. Boron of high purity is reported procurable by this method, but it is either a very fine powder or of vitreous structure. 
  27. ^ J. L. Hoard; R. E. Hughes; D. E. Sands. The Structure of Tetragonal Boron. Journal of the American Chemical Society. 1958, 80 (17): 4507. doi:10.1021/ja01550a019. 
  28. ^ Hoard, Sullenger & Kennard 1970.
  29. ^ Amberger 1981,第61頁.
  30. ^ Wiberg 2001,第931頁.
  31. ^ van Setten M.J., Uijttewaal M.A., de Wijs G.A., de Groot R.A. Thermodynamic stability of boron: The role of defects and zero point motion. J. Am. Chem. Soc. 2007, 129 (9): 2458–2465. PMID 17295480. doi:10.1021/ja0631246. 
  32. ^ Widom M., Mihalkovic M. Symmetry-broken crystal structure of elemental boron at low temperature. Phys. Rev. B. 2008, 77 (6): 064113. Bibcode:2008PhRvB..77f4113W. arXiv:0712.0530可免費查閱. doi:10.1103/PhysRevB.77.064113. 
  33. ^ Talley, La Placa & Post 1960.
  34. ^ 34.0 34.1 Sullenger et al. 1969.
  35. ^ E. Amberger and K. Ploog. Bildung der gitter des reinen bors. J. Less-Common Metals. 1971, 23: 21. doi:10.1016/0022-5088(71)90004-X. 
  36. ^ K. Ploog and E. Amberger. Kohlenstoff-induzierte gitter beim bor: I-tetragonales (B12)4B2C und (B12)4B2C2. J. Less-Common Metals. 1971, 23: 33. doi:10.1016/0022-5088(71)90005-1. 
  37. ^ M. Vlasse, R. Naslain, J. S. Kasper, K. Ploog. Crystal structure of tetragonal boron related to α-AlB12. Journal of Solid State Chemistry. 1979, 28 (3): 289. Bibcode:1979JSSCh..28..289V. doi:10.1016/0022-4596(79)90080-X. 
  38. ^ 38.0 38.1 Wentorf 1965.
  39. ^ Zarechnaya, E.Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Miyajima, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V. Synthesis of an orthorhombic high pressure boron phase. Science and Technology of Advanced Materials (free download). 2008, 9 (4): 044209‒12. Bibcode:2008STAdM...9d4209Z. doi:10.1088/1468-6996/9/4/044209. 
  40. ^ McConville, G. T.; Sullenger, D. B.; Zielinski, R. E.; Gubser, D. U.; Sands, D. E.; Cantrell, J. S. Some physical properties of cubic boron. Physics Letters A. 1976, 58 (4): 257‒259. Bibcode:1976PhLA...58..257M. doi:10.1016/0375-9601(76)90091-8. 
  41. ^ Amberger 1981,第21, 27, 74頁.
  42. ^ Donohue 1982,第80頁.
  43. ^ M. I. Eremets; et al. Superconductivity in Boron. Science. 2001, 293 (5528): 272–4. Bibcode:2001Sci...293..272E. PMID 11452118. doi:10.1126/science.1062286. 
  44. ^ C. Mailhiot, J. B. Grant, and A. K. McMahan. High-pressure metallic phases of boron. Phys. Rev. B. 1990, 42 (14): 9033. Bibcode:1990PhRvB..42.9033M. doi:10.1103/PhysRevB.42.9033. 
  45. ^ Polian, A; Ovsyannikov, S. V.; Gauthier, M; Munsch, M; Chervin, J-C; Lemarchand, G. Boron and boron-rich solids at high pressures. Boldyreva, E; Dera, P (編). High-pressure crystallography: From fundamental phenomena to technological applications: Proceedings of the NATO Advanced Study Institute on High-Pressure Crystallography: Advanced Armor Materials and Protection from Explosives, Erice, Italy, 4‒14 June 2009. Dordrecht: Springer Science+Business Media: 241‒250 (242). 2010. ISBN 978-90-481-9257-1. 
  46. ^ Zhao, J.; Lu, J. P. Pressure-induced metallization in solid boron. Physical Review B: 092101 to 092105. Bibcode:2002PhRvB..66i2101Z. arXiv:cond-mat/0109550可免費查閱. doi:10.1103/PhysRevB.66.092101. 
  47. ^ Zhai, Hua-Jin; Ya-Fan Zhao, Wei-Li Li, Qiang Chen, Hui Bai, Han-Shi Hu, Zachary A. Piazza, Wen-Juan Tian, Hai-Gang Lu, Yan-Bo Wu, Yue-Wen Mu, Guang-Feng Wei, Zhi-Pan Liu, Jun Li, Si-Dian Li, Lai-Sheng Wang. Observation of an all-boron fullerene. Nature Chemistry. 2014-07-13,. advance online publication [2014-08-13]. ISSN 1755-4349. doi:10.1038/nchem.1999. 
  48. ^ Delaplane, R.G.; Dahlborg, U.; Howells, W. S.; Lundström, T. A neutron diffraction study of amorphous boron using a pulsed source. Journal of Non-Crystalline Solids. 1988, 106 (1–3): 66–69. Bibcode:1988JNCS..106...66D. doi:10.1016/0022-3093(88)90229-3. 
  49. ^ J. S. Gillespie Jr. Crystallization of Massive Amorphous Boron. J. Am. Chem. Soc. 1966, 88 (11): 2423. doi:10.1021/ja00963a011. 
  50. ^ 50.0 50.1 Wang & Duan 2003.
  51. ^ S. Johansson; et al. Microfabrication of three-dimensional boron structures by laser chemical processing. J. Appl. Phys. 1992, 72 (12): 5956. Bibcode:1992JAP....72.5956J. doi:10.1063/1.351904. 

參考文獻

[編輯]