美國太空運輸系統計畫
國家 | 美國 |
---|---|
組織 | 美國國家航空暨太空總署 |
目標 | 可重用、低成本,用於地球軌道、地月空間、行星際空間的運輸系統 |
狀態 | 已取消 |
航太計畫資訊 | |
發射地點 | 甘迺迪太空中心 |
太空載具資訊 | |
載人太空飛行器 | |
無人太空載具 | 太空拖船 |
太空運輸系統(英語:Space Transportation System,簡稱:STS)是一項1969年時提出,後被取消的美國太空計畫,該計畫於美國國家航空暨太空總署(NASA)內部亦被稱為綜合項目計畫(英語:Integrated Program Plan,簡稱:IPP)。[1]這項計畫提出一套可重用的載人太空飛行器系統,用以支持阿波羅計畫之後的任務。這計畫被取消後,其中唯一獲撥款實行的部分繼承了項目的名字,即美國太空梭計畫中的太空梭。此計畫的目標有二,透過使用可重用太空載具代替一次性火箭發射太空艙以降低航太成本,以及支持一系列具野心的計畫,包括支持圍繞地球或月球的永久性太空站,以及載人登陸火星。[2]
1969年2月,美國總統尼克森委任了一個由副總統斯皮羅·阿格紐領導的太空任務組,為阿波羅計畫之後的太空項目提供建議。該小組於9月提出以太空運輸系統為主,有三個不同投入程度的項目,核心為最早於1983年,最遲於20世紀末載人登陸火星。太空旅途中最昂貴的部分是將載具送往近地軌道,之後的部分即使是要抵達月球也相顯得便宜,例如農神5號運載火箭大部分的能量都用於逃離地球的引力。因此,只要降低前往近地軌道的成本就能可觀地降低整個任務的成本。以此為基礎,NASA設計出一套模組化系統,通過可重用的穿梭器於軌道上建設太空站作為日後探索火星的基地。[3]系統的主要組成部分包括:
- 設於約270海里(500公里)處的近地軌道,可容納6到12人的永久性的太空站,用作永久繞月軌道空間站。地心軌道上的模組可組合成能容納50至100人的永久空間站
- 化學燃料推進的穿梭載具(shuttle),用以往返地面和地心軌道
- 化學燃料推進的太空拖船(space tug),用以將人員和設備在高至地球同步軌道的軌道間移動同時可轉為一個往返月面和繞月軌道的穿梭載具
- 使用NERVA型核熱火箭推進的穿梭器(shuttle)或貨船(ferry),用以將人員、太空載具和物資在近地軌道、繞月軌道、地球同步軌道、或其他太陽系中的星球間往返。與分離自太空站的載人模組組合可用於載人前往月球或火星
拖船和貨船會採用模組化設計,將多台組合在一起或採用多節推進可應付大型酬載或星制任務。這系統會由處於地心軌道和繞月軌道的推進劑倉庫所支持。[4]農神5號運載火箭仍可用作大型運載火箭配合核熱推進貨船和太空站模組。載人登陸火星只需額外使用一個特別的火星探測飛船。
本計畫截至1969年5月都受NASA首長托馬斯·O·潘恩和副總統阿格紐大力支持。但隨著阿波羅計畫達成了載人登月的目標,尼克森留意到對後續載人太空計畫的政治支持正消退,而國會亦不願為這些計畫提供撥款。有見及此,尼克森拒絕了本計畫中太空梭以外的所有部分,而太空梭繼承了計畫名。尼克森在1970年接受了潘恩的請辭,並委任詹姆斯·弗萊徹接替。[1]
受撥款情況限制,太空梭計畫的規模自原定設計大幅削減,整體計畫亦遭延誤。首次太空梭任務為1981年的STS-1,太空梭於2011年的STS-135後退役。
系統中的另一部分,自由號太空站,於1980年代初獲批准並於1984年由里根總統宣佈。但這部分亦於1993年前在政治上變得不可行,被與俄羅斯合作的國際太空站代替。國際太空站於2011年建成。
系統中的載具
[編輯]來往地球軌道的太空梭
[編輯]化學燃料推進的太空梭被設想為可載人且可重複使用的載具,來往地面和地心軌道。原先的構想為一大一小,兩個可完全重用且均可載人的部分;較大型的「推進器」(booster)部分會將「軌道器」部分帶至一定高度和速度,並進行分離;推進器會返回地面,而軌道器會繼續前往地心軌道以完成任務,最終返回大氣層並水平降落於跑道上。在後來得以落實的美國太空梭計畫,設計改為可部分重用,即軌道器和火箭推進器可重用,而外掛的外儲箱則會於每次發射時拋棄。[5][4]
太空拖船
[編輯]馬歇爾太空飛行中心的太空拖船是為維修衛星,轉移至地球同步軌道以及將酬載拖至核熱推進太空梭而設計。拖船的模組化設計包括一個圓柱型的推進模組、可分離組合的載人模組和貨運模組、以及登陸月球用的腳架,使其成為來往月面和繞月軌道的穿梭器。[4][6][7]
核熱推進太空梭
[編輯]使用到NERVA(Nuclear Engine for Rocket Vehicle Application,火箭飛行器用核引擎)引擎的計畫包括於1978年前到訪火星,以及1981年前建好一個永久性的月球基地。[8] NERVA火箭可用作貨運拖船,將酬載從近地軌道送至更高軌道、為不同地球和月球軌道上的太空站補給、以及支援月球上的永久基地。NERVA引擎亦可用於農神5號運載火箭的S-N上級推進器,使其近地軌道運載力增至340,000英磅(150公噸)。[8]
太空站模組
[編輯]太空站模組將為未來的地球軌道載人活動、持續載人月球探索以及載人行星探險提供基礎。該太空站將是一個可容納6至12名人員的永久性結構。最初,太空站將處於近地軌道;後來的太空站將建立在極軌道和同步軌道上。同樣太空站模組還將在月球軌道上提供永久太空站,人員可以從該太空站發送到月球表面。 透過將太空站模組連接在一起,可以創建一個大型太空基地。該基地可容納50至100名人員,可作為一個太空實驗室進行廣泛的物理和生物實驗。 最後,太空站模組將成為載人行星探險任務模組的原型。[9][1][4]
參考文獻
[編輯]- ^ 1.0 1.1 1.2 Portree, David S.F. Integrated Program Plan "Maximum Rate" Traffic Model (1970). Wired. 2012-04-18 [2024-07-07]. (原始內容存檔於2024-08-19) (英語).
- ^ Portree, David S. F. Five options for NASA's future (1970). Beyond Apollo. 2010-02-08. (原始內容存檔於2011-10-08) (英語).
- ^ Harland, David M. The Story of the Space Shuttle. Springer London. 2004: 2. ISBN 1-85233-793-1 (英語).
- ^ 4.0 4.1 4.2 4.3 The Post-Apollo Space Program: Directions for the Future. NASA. 2000-10-01 [1969年9月報告] [2024-12-08] (英語).
- ^ Heppenheimer, Thomas A. The Space Shuttle Decision (PDF). NASA. 1999 [2024-10-07]. (原始內容存檔 (PDF)於2024-10-07) (英語).
- ^ Technical Study for Use of Sat V, Int 21 & Other Sat V Derivatives to Determine an Optimum Fourth Stage (PDF). NASA. 1971-02-26. (原始內容 (PDF)存檔於2006-11-03) (英語).
- ^ Wade, Mark. OTV. Encyclopedia Astronautica. [2024-12-08] (英語).
- ^ 8.0 8.1 Nuclear Rockets: To Mars and Beyond (PDF). National Security Science magazine (Los Alamos National Laboratory). Issue 1 2011: 16 [2024-12-08] (英語).
- ^ Compton, W. D.; Benson, Charles D. Living and working in space. A history of Skylab. NASA. 1983-01-01 [2024-10-07]. (原始內容存檔於2024-10-09) (英語).
延伸閱讀
[編輯]- Dewar, James. "To The End Of The Solar System: The Story Of The Nuclear Rocket", Apogee, December 2003. ISBN 0813122678