鉿
發現
[編輯]1923年由荷蘭科學家科斯特(D.Coster)和匈牙利科學家喬治·德海韋西(George de Hevesy)由X射線光譜中發現。
背景故事
[編輯]在莫斯萊對元素的X射線研究後,確定在鋇和鉭之間應當有16個元素存在。這時除了61號元素和72號元素之外,其餘14個元素都已經被發現,而且它們都屬於今天所屬的鑭系,也就是當時認為的稀土元素。
那麼72號元素應當歸屬於稀土元素?還是和鈦、鋯同屬一族?當時多數化學家主張屬於前者。法國化學家烏爾班1911年從鐿的氧化物中分離出鎦後,又分離出一個新的元素。在1914年烏爾班去英國將該元素的樣品送請莫斯萊進行X射線光譜檢測,得到的結論是否定的,沒有發現相當於72號元素的譜線。烏爾班堅信新元素的存在,認為出現這樣的結果是因為新研製的機器靈敏度不夠,無法檢測到樣品中痕量新元素的存在。他回到巴黎後與光譜科學家達維利埃共同用第一次世界大戰後改進的X射線譜儀進行檢測。1922年5月,他們宣布測到兩條X譜線,因此斷定新元素是存在的。1913年,丹麥物理學家玻爾提出了原子結構的量子論。接著在1921-1922年之間又提出原子核外電子組態理論。玻爾認為根據他的理論,72號元素不屬於稀土元素,而和鋯一樣是同族元素。也就是說,72號元素不會從稀土元素礦物中出現,而應當從含鋯和鈦的礦石中去尋找。
根據玻爾的推論,在1922年,匈牙利化學家德梅韋西和荷蘭物理學家科斯特對多種含鋯礦石進行了X射線光譜分析,果真發現了這一元素。他們為了紀念該元素的發現所在地——丹麥的首都哥本哈根,以哥本哈根的拉丁語名稱Hafnia命名它為hafnium,元素符號定為Hf。後來德梅韋西製得了幾毫克純的鉿的樣品。
來源
[編輯]它存在於大多數鋯礦中,地殼中含量很少。常與鋯共存,無單獨礦石。
生產
[編輯]從含鈦礦石鈦鐵礦和金紅石的重礦物砂礦石的礦床中可以開採出大量的鋯,因此也會產生大部分的鉿。[4]鋯是一種良好的核燃料棒包覆金屬,它的中子捕獲截面非常小,且高溫下化學穩定性良好。然而,由於鉿可以吸收中子,鋯中的鉿雜質對核反應爐有危害,在核電使用中有必要將鋯與鉿完全分離。無鉿鋯的生產會將鋯和鉿分離,這也是鉿的主要來源。[5]
鉿和鋯的化學性質極其相似,故難以分離。[6]最初使用的方法有利用氟代酸銨溶解度不同的分級結晶法,[7]以及利用氯化物沸點不同的分級蒸餾法,[8]但並未工業化。20世紀40年代後,核反應爐對無鉿鋯的需求推進了分離工藝的研發,如使用多種溶劑的液–液萃取法,現在仍然用於鉿的生產。[9]
約半數金屬鉿是提純鋯的副產物。一些分離提純方法的產物是四氯化鉿,[10]被鈉或鎂還原可製備金屬鉿(克羅爾法)。[11]
- HfCl4 + 2 Mg —1100 °C→ 2 MgCl2 + Hf
Arkel和de Boer 利用了化學傳遞反應開發出了進一步提純鉿的方法:在密閉容器中,鉿與碘在500 °C下反應,形成四碘化鉿;再在1700 °C的鎢絲上,發生逆反應,分解得到碘和鉿。鉿在鎢絲上沉積為固體,而碘可以繼續與剩餘的鉿反應,使轉化趨於完全。[12][13]
- Hf + 2 I2 —500 °C→ HfI4
- HfI4 —1700 °C→ Hf + 2 I2
性質
[編輯]晶體結構有兩種:在1300℃以下時,為六方密堆積(α型);在1300℃以上時,為體心立方(β型)。具有塑性的金屬,當有雜質存在時質變硬而脆。空氣中穩定,灼燒時僅在表面上發暗。細絲可用火柴的火焰點燃。性質似鋯。不和水、稀酸或強鹼作用,但易溶解在王水和氫氟酸中。
化合物
[編輯]在大部分鉿的化合物中,鉿呈現+4價,在溶液中為無色的。二氧化鉿、四氯化鉿和四碘化鉿是常見的化合物。鉿鹽在水中會發生水解,但傾向比相應的鋯鹽要小。[14]
鉿的化合物Ta4HfC5是目前已知物質中熔點最高的,為4,263 K(3,990 °C)[15];儘管在2015年有模擬計算預測一種Hf-C-N (碳氮化鉿)材料的熔點比其高200 K,但尚未經實驗證實[16]。
鉿可以形成各種各樣的錯合物,如氟鉿酸鹽有HfF2−
6、HfF3−
7、HfF4−
8等幾種,氯、溴、碘代的鉿酸鹽有過報道。[17]乙醯丙酮鉿[18]、乙醇鉿[19]等有機鹽也是已知的。
用途
[編輯]由於它容易發射電子而很有用處,如用作白熾燈的燈絲[來源請求]。鉿和鎢或鉬的合金用作高壓放電管的電極用作X射線管的陰極。由於它對中子有較好的吸收能力,抗腐蝕性能好,強度高,因此常用來做核反應爐的控制棒,以減慢核子連鎖反應的速率,同時抑制原子反應的"火焰"。
參考文獻
[編輯]- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry. 2022-05-04. ISSN 1365-3075. doi:10.1515/pac-2019-0603 (英語).
- ^ Lide, D. R. (編). Magnetic susceptibility of the elements and inorganic compounds. CRC Handbook of Chemistry and Physics (PDF) 86th. Boca Raton (FL): CRC Press. 2005. ISBN 0-8493-0486-5. (原始內容 (PDF)存檔於2011-03-03).
- ^ Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.S.; Nahorna, V.V.; Nisi, S.; Wang, P. A new measurement of 174Hf alpha decay. Nuclear Physics A. 2025, 1053: 122976. doi:10.1016/j.nuclphysa.2024.122976.
- ^ Gambogi, Joseph. Yearbook 2008: Zirconium and Hafnium (pdf). United States Geological Survey. [2008-10-27]. (原始內容存檔 (PDF)於2008-12-17).
- ^ Schemel, J. H. ASTM Manual on Zirconium and Hafnium. ASTM International. 1977: 1–5. ISBN 978-0-8031-0505-8.
- ^ Larsen, Edwin; Fernelius W., Conard; Quill, Laurence. Concentration of Hafnium. Preparation of Hafnium-Free Zirconia. Ind. Eng. Chem. Anal. Ed. 1943, 15 (8): 512–515. doi:10.1021/i560120a015.
- ^ van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung von Zirkonium und Hafnium durch Kristallisation ihrer Ammoniumdoppelfluoride (The separation of zirconium and hafnium by crystallization of the double ammonium fluorides)". Zeitschrift für anorganische und allgemeine Chemie (in German). 141: 284–288. doi:10.1002/zaac.19241410117.
- ^ van Arkel, A. E.; de Boer, J. H. (1924). "Die Trennung des Zirkoniums von anderen Metallen, einschließlich Hafnium, durch fraktionierte Distillation (The separation of zirconium and hafnium by fractionated distillation)". Zeitschrift für anorganische und allgemeine Chemie (in German). 141: 289–296. doi:10.1002/zaac.19241410118.
- ^ Hedrick, James B. "Hafnium (頁面存檔備份,存於網際網路檔案館)" (pdf). United States Geological Survey. Retrieved 2008-09-10.
- ^ Griffith, Robert F. Zirconium and hafnium. Minerals yearbook metals and minerals (except fuels). The first production plants Bureau of Mines. 1952: 1162–1171 [2017-07-01]. (原始內容存檔於2016-03-03).
- ^ Gilbert, H. L.; Barr, M. M. Preliminary Investigation of Hafnium Metal by the Kroll Process. Journal of the Electrochemical Society. 1955, 102 (5): 243. doi:10.1149/1.2430037.
- ^ Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 3-11-007511-3.
- ^ van Arkel, A. E.; de Boer, J. H. (1925). "Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall (Production of pure titanium, zirconium, hafnium and Thorium metal)". Zeitschrift für anorganische und allgemeine Chemie (in German). 148: 345–350. doi:10.1002/zaac.19251480133.
- ^ 北師大 等. 無機化學(第四版)下冊. 高等教育出版社, 2003. ISBN 978-7-04-011583-3. pp 793
- ^ Andrievskii, R. A.; Strel'nikova, N. S.; Poltoratskii, N. I.; Kharkhardin, E. D.; Smirnov, V. S. Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC. Soviet Powder Metallurgy and Metal Ceramics. 1967, 6 (1): 65–67. ISSN 0038-5735. doi:10.1007/BF00773385.
- ^ Hong, Qi-Jun; van de Walle, Axel. Prediction of the material with highest known melting point fromab initiomolecular dynamics calculations. Physical Review B. 2015, 92 (2). ISSN 1098-0121. doi:10.1103/PhysRevB.92.020104.
- ^ 申泮文, 車雲霞, 羅裕基 等. 無機化學叢書 第八卷 鈦分族 釩分族 鉻分族. 科學出版社, 1998. ISBN 7-03-005554-3
- ^ Zherikova, K. V.; Morozova, N. B.; Kuratieva, N. V.; Baidina, I. A.; Igumenov, I. K. Synthesis and structural investigation of hafnium(IV) complexes with acetylacetone and trifluoroacetylacetone. Journal of Structural Chemistry. November 2005, 46 (6): 1039–1046. doi:10.1007/s10947-006-0239-2.
- ^ 王長紅, 楊聲海, 陳永明 等. 電化學合成乙醇鉿的參數優化、表徵和熱性能分析. 中國有色金屬學報(英文版), 2017, 27 (3):694-700
外部連結
[編輯]- 元素鉿在洛斯阿拉莫斯國家實驗室的介紹(英文)
- EnvironmentalChemistry.com —— 鉿(英文)
- 元素鉿在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
- 元素鉿在Peter van der Krogt elements site的介紹(英文)
- WebElements.com – 鉿(英文)