使用者:Kevin6983876/超高解析度顯微鏡學
在光學顯微鏡學中,超高解析度顯微鏡學是一結合多項技術的專有名詞,此技術讓影像解析度能超越繞射極限[1][2]。根據1873年恩斯特·阿貝的研究(特別是對於寬場光源),光的繞射會造成傳統光學顯微鏡解析度的極限[3]:一數值孔徑N.A.,且入射光波長為λ的具繞射極限的顯微鏡的水平解析度為d = λ/(2 N.A.),垂直解析度(z方向)也可以用同樣的表達式給出。一個標準的光學顯微鏡解析度在可見光範圍約為水平200奈米、垂直600奈米[4]。實驗上,可達到的解析度可量取點狀物體的點擴散函數的半峰全寬求得。雖然顯微鏡的解析力並未完整定義[5],目前公認超高解析度顯微鏡技術可達到比阿貝所定義的解析度。
超高解析度顯影劑術包含單分子局域分析法、光子穿隧顯微術[6]、以及利用超級透鏡、近場掃描式光學顯微鏡、4Pi顯微鏡、共聚焦顯微鏡(將針孔關閉)、或是經過反褶積[7] 、偵測器相素重配等計算處理後的共軛焦顯微鏡影像[8][9],也包含利用結構性光源的險微鏡技術(例如SIM以及垂直顯像SMI)。
目前有兩種主要的功能型超高解析度顯微鏡學:[10]
- 決定性超高解析度:常用在生物顯微鏡的發光物─螢光色素,受激後有非線性反應,此非線性反應可以用來提高解析度,這些方法包括誘導發射抑制性顯微術、激態抑制性顯微術、可逆飽和光學螢光轉換和SSIM。
- 隨機性超高解析度:分子光源的化學複雜性提供時間域上的複雜表現,可以讓許多非常接近的螢光色素在不同時間發光,因而可以在不同時間解析不同分子。這些方法包括超解析度光變成像(SOFI)和全單分子局域方法(SMLM)如 垂直顯像SMI、光活化局域性顯微鏡法, FPALM、STORM和dSTORM。
2014年10月8日, 諾貝爾化學獎頒發給艾力克·貝齊格, 威廉·莫爾納爾和斯特凡·赫爾以表彰他們對"超高解析度螢光顯微鏡"的貢獻,這促使"光學顯微鏡進展到奈米尺度"。[11][12]
歷史
[編輯]在1978年,已有第一個突破阿貝極限的理論,其試圖透過4Pi 顯微鏡來當作共軛焦雷射掃描螢光顯微鏡[13]。其原理利用兩個相反的物鏡的透光,同時打在樣品的異側,以增加立體角。
超解析技術
[編輯]光子穿隧顯微鏡(PTM)
[編輯]近場光隨機測繪(NORM)顯微鏡
[編輯]近場光隨機測繪(NORM)顯微鏡是一種透過觀察在浸液中的奈米粒子的布朗運動,並透過遠場顯微鏡光學採集奈米粒子的近場資訊。[15][16]
NORM利用隨機移動的奈米粒子來掃描物體表面。透過這個顯微鏡,奈米粒子看起來像對稱的圓點。圓點的寬度等於點擴散函數,並決定顯微鏡的解析度。特定粒子的水平座標解析度比同等光學顯微鏡的解析度還要高。透過收集多張影像,我們可以劃出整個視野範圍的近場的強度分布圖。 與NSOM和ANSOM比較,這種方法不需要任何特殊的尖端定位設備,並可以達到大視野和深焦長。 由於"感測器"可以大量掃描,圖像獲取時間可以縮點。
4Pi顯微鏡
[編輯]一 4Pi顯微鏡 是一個雷射掃描的 螢光顯微鏡,其改進了軸向解析度。從傳統的500至700 納米可以提高到100-150 納米,比標準的 焦顯微鏡幾乎減少5至7倍的球焦點體積,.
[[Category:德国发明]] [[Category:显微术]] [[Category:有未审阅翻译的页面]]
- ^ Neice, A. Methods and Limitations of Subwavelength Imaging. Advances in Imaging and Electron Physics 163. 2010: 117–140. ISBN 978-0-12-381314-5. doi:10.1016/S1076-5670(10)63003-0.
- ^ Juan Carlos Stockert, Alfonso Blázquez-Castro. Chapter 20 Super-resolution Microscopy. Fluorescence Microscopy in Life Sciences. Bentham Science Publishers. 2017: 687–711 [24 December 2017]. ISBN 978-1-68108-519-7.
- ^ Abbe, E. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrmehmung (PDF). Archiv für mikroskopische Anatomie. 1873, 9: 413–420. doi:10.1007/BF02956173 (德語).
- ^ Cremer, Christoph; Masters, Barry R. Resolution enhancement techniques in microscopy. The European Physical Journal H. 2013-04-01, 38 (3): 281–344. Bibcode:2013EPJH...38..281C. ISSN 2102-6459. doi:10.1140/epjh/e2012-20060-1 (英語).
- ^ Francia, G. Toraldo di. Resolving Power and Information. JOSA. 1955-07-01, 45 (7): 497–501. doi:10.1364/JOSA.45.000497 (英語).
- ^ John M. Guerra. Photon Tunneling Microscopy. Applied Optics. 1990, 29 (26): 3741–3752. Bibcode:1990ApOpt..29.3741G. PMID 20567479. doi:10.1364/AO.29.003741.
- ^ Agard, David A.; Sedat, John W. Three-dimensional architecture of a polytene nucleus. Nature. April 1983, 302 (5910): 676–681. Bibcode:1983Natur.302..676A. ISSN 0028-0836. doi:10.1038/302676a0 (英語).
- ^ Luca, Giulia M. R. De; Breedijk, Ronald M. P.; Brandt, Rick A. J.; Zeelenberg, Christiaan H. C.; Jong, Babette E. de; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd. Re-scan confocal microscopy: scanning twice for better resolution. Biomedical Optics Express. 2013-11-01, 4 (11): 2644–2656. PMC 3829557 . PMID 24298422. doi:10.1364/BOE.4.002644 (英語).
- ^ Sheppard, Colin J. R.; Mehta, Shalin B.; Heintzmann, Rainer. Superresolution by image scanning microscopy using pixel reassignment. Optics Letters. 2013-08-01, 38 (15): 2889–2892. Bibcode:2013OptL...38.2889S. ISSN 1539-4794. PMID 23903171. doi:10.1364/OL.38.002889. hdl:1912/6208 (英語).
- ^ SPIE. W.E. Moerner plenary presentation: Single-molecule spectroscopy, imaging, and photocontrol -- foundations for super-resolution microscopy. SPIE Newsroom. March 2015. doi:10.1117/2.3201503.17.
- ^ Ritter, Karl; Rising, Malin. 2 Americans, 1 German win chemistry Nobel. Associated Press. 8 October 2014 [8 October 2014].
- ^ Chang, Kenneth. 2 Americans and a German Are Awarded Nobel Prize in Chemistry. New York Times. 8 October 2014 [8 October 2014].
- ^ Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc Acta. September 1978, 81 (1): 31–44. PMID 713859.
- ^ John M. Guerra. Photon Tunneling Microscopy. Applied Optics. 1990, 29 (26): 3741–3752. Bibcode:1990ApOpt..29.3741G. PMID 20567479. doi:10.1364/AO.29.003741.
- ^ 美國專利2009/0116,024,優先權日期7April2006年:J.V.Mikliaev,S.A.Asselborn 方法獲得一個高解析度圖像
- ^ Yu. V. Miklyaev; S. A. Asselborn; K. A. Zaytsev; M. Ya. Darscht. Superresolution microscopy in far-field by near-field optical random mapping nanoscopy. Appl. Phys. Lett. 2014, 105 (11): 113103(1–4). Bibcode:2014ApPhL.105k3103M. doi:10.1063/1.4895922.