跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

诺特群

本页使用了标题或全文手工转换
维基百科,自由的百科全书

群论中,诺特群(英語:Noetherian group)是指使得其子群满足升链条件

定义

[编辑]

是一个。那么以下条件等价,满足此条件的群称为诺特群

性质

[编辑]

关于诸运算的封闭性

[编辑]

诺特群的子群以及商群是诺特群。诺特群被诺特群的扩张仍是诺特群。

诺特可解群

[编辑]

对于群,以下条件等价。[1]:165

  • 可解群,并且是诺特群。
  • 存在的子群列,使得对于每个循环群

满足这个条件的群称为多循环群

对于幂零群,以下条件等价。[1]:145

  • 是诺特群。
  • 有限生成群

[编辑]

所有有限群都是诺特群。所有有限生成幂零群多循环群从而是诺特群。[1]:145

多循环群有限群扩张是诺特群。其逆不成立,也就是说一个诺特群可能不具有指数有限的多循环正规子群。但这样的反例的构造是相当复杂的。

历史

[编辑]

诺特群的名称取自埃米·诺特。不是多循环群有限群扩张的诺特群由亚历山大·奥利尚斯基在一篇1979年论文中首次构造。[2][3]

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 Robinson, Derek S. Joins of subnormal subgroups. Illinois Journal of Mathematics. 1965, 9: 144–168. ISSN 0019-2082. MR 0170953. Zbl 0135.04805 (英语). 
  2. ^ Ольшанский, А. Ю. Бесконечная простая нётерова группа без кручения. Известия Академии наук СССР. Серия математическая. 1979, 43 (6): 1328–1393 [2022-12-20]. ISSN 0373-2436. MR 0567039. Zbl 0431.20027. doi:10.1070/IM1980v015n03ABEH001268. (原始内容存档于2022-12-20) (俄语). 
  3. ^ Ol'šanskiĭ, A. J. An infinite simple Noetherian group without torsion. Mathematics of the USSR-Izvestiya. 1980, 15 (3): 531–588 [2022-12-20]. ISSN 0025-5726. MR 0567039. Zbl 0431.20027. doi:10.1070/IM1980v015n03ABEH001268. (原始内容存档于2022-12-20) (英语). 

外部链接

[编辑]